Solution 2.1:3f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.1:3f moved to Solution 2.1:3f: Robot: moved page)  | 
				m   | 
			||
| Line 1: | Line 1: | ||
| - | {{NAVCONTENT_START}}  | ||
Treating <math>4x</math> as one term, we can write  | Treating <math>4x</math> as one term, we can write  | ||
| - | <math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>  | + | {{Displayed math||<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>}}  | 
and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain  | and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain  | ||
| - | <math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>  | + | {{Displayed math||<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>.}}  | 
| - | + | ||
| - | + | ||
Current revision
Treating \displaystyle 4x as one term, we can write
| \displaystyle \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 | 
and since \displaystyle y^2 +2y+1=(y+1)^2 we obtain
| \displaystyle \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 . | 
