Solution 2.1:3b
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{NAVCONTENT_START}} | ||
If we take out the factor 5, we see that the expression can be factorized using the conjugate rule | If we take out the factor 5, we see that the expression can be factorized using the conjugate rule | ||
| - | <math> | + | {{Displayed math||<math>\begin{align} |
5x^2-20&=5(x^4-4)\\ | 5x^2-20&=5(x^4-4)\\ | ||
&= 5(x^2-2^2)\\ | &= 5(x^2-2^2)\\ | ||
| - | &= 5(x+2)(x-2) | + | &= 5(x+2)(x-2)\,\textrm{.} |
| - | \end{align} | + | \end{align}</math>}} |
| - | </math> | + | |
| - | + | ||
| - | + | ||
Current revision
If we take out the factor 5, we see that the expression can be factorized using the conjugate rule
| \displaystyle \begin{align}
5x^2-20&=5(x^4-4)\\ &= 5(x^2-2^2)\\ &= 5(x+2)(x-2)\,\textrm{.} \end{align} |
