Solution 2.1:1b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.1:1b moved to Solution 2.1:1b: Robot: moved page)  | 
				m   | 
			||
| Line 1: | Line 1: | ||
| - | + | When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>,  | |
| - | When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>  | + | |
| - | <math>  | + | {{Displayed math||<math>\begin{align}  | 
| - | + | (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\[3pt]   | |
| - | \begin{align}  | + | &= xy+x^2y-x^3y\,\textrm{.}   | 
| - | (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy \\   | + | |
| - | &= xy+x^2y-x^3y   | + | |
\end{align}   | \end{align}   | ||
| - | </math>  | + | </math>}}  | 
| - | + | ||
| - | + | ||
Current revision
When the factor \displaystyle xy is multiplied by the expression inside the brackets, \displaystyle 1+x+x^2 , the distributive rule gives that all three terms \displaystyle 1, \displaystyle x and \displaystyle -x^2 are multiplied by \displaystyle xy,
| \displaystyle \begin{align}
 (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\[3pt] &= xy+x^2y-x^3y\,\textrm{.} \end{align}  | 
