Solution 2.1:1b
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
| (4 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>, |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| + | (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\[3pt] | ||
| + | &= xy+x^2y-x^3y\,\textrm{.} | ||
| + | \end{align} | ||
| + | </math>}} | ||
Current revision
When the factor \displaystyle xy is multiplied by the expression inside the brackets, \displaystyle 1+x+x^2 , the distributive rule gives that all three terms \displaystyle 1, \displaystyle x and \displaystyle -x^2 are multiplied by \displaystyle xy,
| \displaystyle \begin{align}
(1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy\\[3pt] &= xy+x^2y-x^3y\,\textrm{.} \end{align} |
