Solution 1.3:6b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 1.3:6b moved to Solution 1.3:6b: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}</math>.}}  | 
| + | |||
| + | Another way to see this is to rewrite the two powers as  | ||
| + | |||
| + | {{Displayed math||<math>0\textrm{.}5^{-3}=\frac{1}{0\textrm{.}5^{3}}\quad</math> and <math>\quad 0\textrm{.}4^{-3}=\frac{1}{0\textrm{.}4^3}</math>}}  | ||
| + | |||
| + | and because <math>0\textrm{.}5^{3} > 0\textrm{.}4^{3}</math> (see exercise a), it follows that  | ||
| + | |||
| + | {{Displayed math||<math>\frac{1}{0\textrm{.}4^{3}} > \frac{1}{0\textrm{.}5^{3}}\,</math>,}}  | ||
| + | |||
| + | i.e. <math>0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}\,</math>.  | ||
Current revision
When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus
| \displaystyle 0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}. | 
Another way to see this is to rewrite the two powers as
| \displaystyle 0\textrm{.}5^{-3}=\frac{1}{0\textrm{.}5^{3}}\quad and \displaystyle \quad 0\textrm{.}4^{-3}=\frac{1}{0\textrm{.}4^3} | 
and because \displaystyle 0\textrm{.}5^{3} > 0\textrm{.}4^{3} (see exercise a), it follows that
| \displaystyle \frac{1}{0\textrm{.}4^{3}} > \frac{1}{0\textrm{.}5^{3}}\,, | 
i.e. \displaystyle 0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}\,.
