Solution 3.1:5c
From Förberedande kurs i matematik 1
m  (Lösning 3.1:5c moved to Solution 3.1:5c: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The trick is to use the conjugate rule   | 
| - | <  | + | <math>\left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}}</math>  | 
| - | {{  | + | and multiply the top and bottom of the fraction by   | 
| + | <math>3-\sqrt{7}</math>  | ||
| + | (note the minus sign), since then the new denominator will be    | ||
| + | <math>\left( 3+\sqrt{7} \right)\left( 3-\sqrt{7} \right)=3^{2}-\left( \sqrt{7} \right)^{2}=9-7=2</math>  | ||
| + | (conjugate rule with   | ||
| + | <math>a=\text{3 }</math>  | ||
| + | and   | ||
| + | <math>b=\sqrt{\text{7}}</math>  | ||
| + | ), i.e. the root sign is squared away.  | ||
| + | |||
| + | The whole calculation is  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \frac{2}{3+\sqrt{7}}=\frac{2}{3+\sqrt{7}}\centerdot \frac{3-\sqrt{7}}{3-\sqrt{7}}=\frac{2\left( 3-\sqrt{7} \right)}{3^{2}-\left( \sqrt{7} \right)^{2}} \\   | ||
| + | & =\frac{2\centerdot 3-2\sqrt{7}}{2}=3-\sqrt{7} \\   | ||
| + | \end{align}</math>  | ||
Revision as of 14:43, 22 September 2008
The trick is to use the conjugate rule \displaystyle \left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}} and multiply the top and bottom of the fraction by \displaystyle 3-\sqrt{7} (note the minus sign), since then the new denominator will be \displaystyle \left( 3+\sqrt{7} \right)\left( 3-\sqrt{7} \right)=3^{2}-\left( \sqrt{7} \right)^{2}=9-7=2 (conjugate rule with \displaystyle a=\text{3 } and \displaystyle b=\sqrt{\text{7}} ), i.e. the root sign is squared away.
The whole calculation is
\displaystyle \begin{align}
& \frac{2}{3+\sqrt{7}}=\frac{2}{3+\sqrt{7}}\centerdot \frac{3-\sqrt{7}}{3-\sqrt{7}}=\frac{2\left( 3-\sqrt{7} \right)}{3^{2}-\left( \sqrt{7} \right)^{2}} \\ 
& =\frac{2\centerdot 3-2\sqrt{7}}{2}=3-\sqrt{7} \\ 
\end{align}
