Solution 1.3:5f
From Förberedande kurs i matematik 1
m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The whole expression is quite complicated, so it can be useful to simplify the terms <math>\bigl(125^{\frac{1}{3}}\bigr)^{2}</math> and <math>\bigl(27^{\frac{1}{3}}\bigr)^{-2}</math> first,  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| + | \bigl(125^{\frac{1}{3}}\bigr)^{2} &= 125^{\frac{1}{3}\cdot 2} = 125^{\frac{2}{3}}\,,\\[5pt]  | ||
| + | \bigl(27^{\frac{1}{3}}\bigr)^{-2} &= 27^{\frac{1}{3}\cdot (-2)} = 27^{-\frac{2}{3}}\,\textrm{.}\end{align}</math>}}  | ||
| + | |||
| + | Then, the bases 125, 27 and 9 can be rewritten as  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | 125 &= 5\cdot 25 = 5\cdot 5\cdot 5 = 5^{3},\\   | ||
| + | 27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3},\\  | ||
| + | 9 &= 3\cdot 3 = 3^{2}\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | With the help of the power rules,  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \bigl(125^{\frac{1}{3}}\bigr)^{2}\cdot\bigl(27^{\frac{1}{3}}\bigr)^{-2}\cdot 9^{\frac{1}{2}} &= 125^{\frac{2}{3}}\cdot 27^{-\frac{2}{3}}\cdot 9^{\frac{1}{2}}\\[5pt]  | ||
| + | &= \bigl(5^{3}\bigr)^{\frac{2}{3}}\cdot \bigl(3^{3}\bigr)^{-\frac{2}{3}}\cdot \bigl(3^{2}\bigr)^{\frac{1}{2}}\\[5pt]  | ||
| + | &= 5^{3\cdot\frac{2}{3}}\cdot 3^{3\cdot (-\frac{2}{3})}\cdot 3^{2\cdot\frac{1}{2}}\\[5pt]  | ||
| + | &= 5^{2}\cdot 3^{-2}\cdot 3^{1}\\[5pt]  | ||
| + | &= 5^{2}\cdot 3^{-2+1}\\[5pt]  | ||
| + | &= 5^{2}\cdot 3^{-1}\\[5pt]  | ||
| + | &= 5\cdot 5\cdot \frac{1}{3}\\[5pt]  | ||
| + | &= \frac{25}{3}\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
Current revision
The whole expression is quite complicated, so it can be useful to simplify the terms \displaystyle \bigl(125^{\frac{1}{3}}\bigr)^{2} and \displaystyle \bigl(27^{\frac{1}{3}}\bigr)^{-2} first,
| \displaystyle \begin{align}
 \bigl(125^{\frac{1}{3}}\bigr)^{2} &= 125^{\frac{1}{3}\cdot 2} = 125^{\frac{2}{3}}\,,\\[5pt] \bigl(27^{\frac{1}{3}}\bigr)^{-2} &= 27^{\frac{1}{3}\cdot (-2)} = 27^{-\frac{2}{3}}\,\textrm{.}\end{align}  | 
Then, the bases 125, 27 and 9 can be rewritten as
| \displaystyle \begin{align}
 125 &= 5\cdot 25 = 5\cdot 5\cdot 5 = 5^{3},\\ 27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3},\\ 9 &= 3\cdot 3 = 3^{2}\textrm{.} \end{align}  | 
With the help of the power rules,
| \displaystyle \begin{align}
 \bigl(125^{\frac{1}{3}}\bigr)^{2}\cdot\bigl(27^{\frac{1}{3}}\bigr)^{-2}\cdot 9^{\frac{1}{2}} &= 125^{\frac{2}{3}}\cdot 27^{-\frac{2}{3}}\cdot 9^{\frac{1}{2}}\\[5pt] &= \bigl(5^{3}\bigr)^{\frac{2}{3}}\cdot \bigl(3^{3}\bigr)^{-\frac{2}{3}}\cdot \bigl(3^{2}\bigr)^{\frac{1}{2}}\\[5pt] &= 5^{3\cdot\frac{2}{3}}\cdot 3^{3\cdot (-\frac{2}{3})}\cdot 3^{2\cdot\frac{1}{2}}\\[5pt] &= 5^{2}\cdot 3^{-2}\cdot 3^{1}\\[5pt] &= 5^{2}\cdot 3^{-2+1}\\[5pt] &= 5^{2}\cdot 3^{-1}\\[5pt] &= 5\cdot 5\cdot \frac{1}{3}\\[5pt] &= \frac{25}{3}\,\textrm{.} \end{align}  | 
