Solution 3.1:5b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.1:5b moved to Solution 3.1:5b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | In order to eliminate   | 
| - | <  | + | <math>\sqrt[3]{7}=7^{{1}/{3}\;}</math>  | 
| - | {{  | + | from the denominator, we can multiply the top and bottom of the  fraction by   | 
| + | <math>7^{{2}/{3}\;}</math>. The denominator becomes   | ||
| + | <math>7^{{1}/{3}\;}\centerdot 7^{{2}/{3}\;}=7^{{1}/{3+{2}/{3}\;}\;}=7^{1}=7</math>  | ||
| + | and we get   | ||
| + | |||
| + | |||
| + | <math>\frac{1}{\sqrt[3]{7}}=\frac{1}{7^{{1}/{3}\;}}=\frac{1}{7^{{1}/{3}\;}}\centerdot \frac{7^{{2}/{3}\;}}{7^{{2}/{3}\;}}=\frac{7^{{2}/{3}\;}}{7}.</math>  | ||
Revision as of 14:34, 22 September 2008
In order to eliminate \displaystyle \sqrt[3]{7}=7^{{1}/{3}\;} from the denominator, we can multiply the top and bottom of the fraction by \displaystyle 7^{{2}/{3}\;}. The denominator becomes \displaystyle 7^{{1}/{3}\;}\centerdot 7^{{2}/{3}\;}=7^{{1}/{3+{2}/{3}\;}\;}=7^{1}=7 and we get
\displaystyle \frac{1}{\sqrt[3]{7}}=\frac{1}{7^{{1}/{3}\;}}=\frac{1}{7^{{1}/{3}\;}}\centerdot \frac{7^{{2}/{3}\;}}{7^{{2}/{3}\;}}=\frac{7^{{2}/{3}\;}}{7}.
