Solution 1.3:4c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:1_3_4c.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The whole expression consists of factors having a base of 5 so the power rules can be used to simplify the expression first  | 
| - | + | ||
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| + | \frac{5^{12}}{5^{-4}}\cdot \bigl( 5^{2} \bigr)^{-6}  | ||
| + | &= \frac{5^{12}}{5^{-4}}\cdot 5^{2\cdot (-6)}\\[3pt]  | ||
| + | &= \frac{5^{12}}{5^{-4}}\cdot 5^{-12}\\[3pt]  | ||
| + | &= \frac{5^{12}\cdot 5^{-12}}{5^{-4}}\\[3pt]  | ||
| + | &= \frac{5^{12-12}}{5^{-4}}\\[3pt]  | ||
| + | &= \frac{5^{0}}{5^{-4}}\\[3pt]  | ||
| + | &= 5^{0-(-4)}\\[3pt]  | ||
| + | &= 5^{4}\\[3pt]  | ||
| + | &= 5\cdot 5\cdot 5\cdot 5\\[3pt]  | ||
| + | &= 625\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Current revision
The whole expression consists of factors having a base of 5 so the power rules can be used to simplify the expression first
| \displaystyle \begin{align}
 \frac{5^{12}}{5^{-4}}\cdot \bigl( 5^{2} \bigr)^{-6} &= \frac{5^{12}}{5^{-4}}\cdot 5^{2\cdot (-6)}\\[3pt] &= \frac{5^{12}}{5^{-4}}\cdot 5^{-12}\\[3pt] &= \frac{5^{12}\cdot 5^{-12}}{5^{-4}}\\[3pt] &= \frac{5^{12-12}}{5^{-4}}\\[3pt] &= \frac{5^{0}}{5^{-4}}\\[3pt] &= 5^{0-(-4)}\\[3pt] &= 5^{4}\\[3pt] &= 5\cdot 5\cdot 5\cdot 5\\[3pt] &= 625\,\textrm{.} \end{align}  | 
