Solution 1.3:3e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | The number   | + | The number 9 can be written as <math>9=3\cdot 3=3^{2}</math> and hence the denominator in the expression is equal to  | 
| - | + | ||
| - | can be written as   | + | |
| - | <math>9=3\  | + | |
| - | + | {{Displayed math||<math>9^{2} = (3^{2})^{2} = 3^{2\cdot 2} = 3^{4}\,</math>.}}  | |
| - | + | ||
| - | + | ||
| - | <math>9^{2}=  | + | |
The whole quotient becomes  | The whole quotient becomes  | ||
| - | + | {{Displayed math||<math>\frac{3}{9^{2}}=\frac{3^{1}}{3^{4}}=3^{1-4}=3^{^{-3}}</math>.}}  | |
| - | <math>\frac{3}{9^{2}}=\frac{3^{1}}{3^{4}}=3^{1-4}=3^{^{-3}}</math>  | + | |
Current revision
The number 9 can be written as \displaystyle 9=3\cdot 3=3^{2} and hence the denominator in the expression is equal to
| \displaystyle 9^{2} = (3^{2})^{2} = 3^{2\cdot 2} = 3^{4}\,. | 
The whole quotient becomes
| \displaystyle \frac{3}{9^{2}}=\frac{3^{1}}{3^{4}}=3^{1-4}=3^{^{-3}}. | 
