Solution 3.1:3d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.1:3d moved to Solution 3.1:3d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | We can multiply   | 
| - | <  | + | <math>\sqrt{\frac{2}{3}}</math>  | 
| - | {{  | + | into the bracket and then write  the root expressions together under a common root sign using the rule   | 
| + | <math>\sqrt{a}\centerdot \sqrt{b}=\sqrt{ab}</math>  | ||
| + | |||
| + | |||
| + | |||
| + | <math>\sqrt{\frac{2}{3}}\left( \sqrt{6}-\sqrt{3} \right)=\sqrt{\frac{2}{3}}\centerdot \sqrt{6}-\sqrt{\frac{2}{3}}\centerdot \sqrt{3}=\sqrt{\frac{2\centerdot 6}{3}}-\sqrt{\frac{2\centerdot 3}{3}}.</math>  | ||
| + | |||
| + | Because   | ||
| + | <math>\frac{2\centerdot 6}{3}=2\centerdot 2=2^{2}</math>  | ||
| + | and   | ||
| + | <math>\frac{2\centerdot 3}{3}=2</math>, we obtain   | ||
| + | |||
| + | |||
| + | <math>\sqrt{\frac{2}{3}}\left( \sqrt{6}-\sqrt{3} \right)=\sqrt{2^{2}}-\sqrt{2}=2-\sqrt{2}</math>  | ||
Revision as of 13:07, 22 September 2008
We can multiply \displaystyle \sqrt{\frac{2}{3}} into the bracket and then write the root expressions together under a common root sign using the rule \displaystyle \sqrt{a}\centerdot \sqrt{b}=\sqrt{ab}
\displaystyle \sqrt{\frac{2}{3}}\left( \sqrt{6}-\sqrt{3} \right)=\sqrt{\frac{2}{3}}\centerdot \sqrt{6}-\sqrt{\frac{2}{3}}\centerdot \sqrt{3}=\sqrt{\frac{2\centerdot 6}{3}}-\sqrt{\frac{2\centerdot 3}{3}}.
Because \displaystyle \frac{2\centerdot 6}{3}=2\centerdot 2=2^{2} and \displaystyle \frac{2\centerdot 3}{3}=2, we obtain
\displaystyle \sqrt{\frac{2}{3}}\left( \sqrt{6}-\sqrt{3} \right)=\sqrt{2^{2}}-\sqrt{2}=2-\sqrt{2}
