Solution 1.3:2a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 1.3:2a moved to Solution 1.3:2a: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | We can write every factor in the expression as a power of 2,  | 
| - | + | ||
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| + | 2 &= 2^{1}\,, \\    | ||
| + | 4 &= 2\cdot 2 = 2^{2}\,,\\   | ||
| + | 8 &= 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3}\,,  | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | which gives  | ||
| + | |||
| + | {{Displayed math||<math>2\cdot 4\cdot 8 = 2^{1}\cdot 2^{2}\cdot 2^{3} = 2^{1+2+3} = 2^{6}\,</math>.}}  | ||
Current revision
We can write every factor in the expression as a power of 2,
| \displaystyle \begin{align}
 2 &= 2^{1}\,, \\ 4 &= 2\cdot 2 = 2^{2}\,,\\ 8 &= 2\cdot 4 = 2\cdot 2\cdot 2 = 2^{3}\,, \end{align}  | 
which gives
| \displaystyle 2\cdot 4\cdot 8 = 2^{1}\cdot 2^{2}\cdot 2^{3} = 2^{1+2+3} = 2^{6}\,. | 
