Solution 3.1:1d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.1:1d moved to Solution 3.1:1d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | Because   | 
| - | <  | + | <math>\sqrt{3}</math>  | 
| - | {{  | + | is   | 
| + | <math>3^{\frac{1}{2}}</math>,  then   | ||
| + | <math>\sqrt{\sqrt{3}}=\sqrt{3^{{1}/{2}\;}}=\left( 3^{{1}/{2}\;} \right)^{{1}/{2}\;}=3^{\frac{1}{2}\centerdot \frac{1}{2}}=3^{{1}/{4}\;}</math>  | ||
Revision as of 10:17, 22 September 2008
Because \displaystyle \sqrt{3} is \displaystyle 3^{\frac{1}{2}}, then \displaystyle \sqrt{\sqrt{3}}=\sqrt{3^{{1}/{2}\;}}=\left( 3^{{1}/{2}\;} \right)^{{1}/{2}\;}=3^{\frac{1}{2}\centerdot \frac{1}{2}}=3^{{1}/{4}\;}
