Solution 2.1:7b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.1:7b moved to Solution 2.1:7b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | The denominators   | 
| - | <  | + | <math>x-1</math>  | 
| - | {{  | + | and    | 
| + | <math>x^{2}</math>  | ||
| + | do not have a common denominator, so the lowest common denominator is   | ||
| + | <math>x^{2}\left( x-1 \right)</math>. We  treat all three terms so that they have a common denominator and then start simplifying:  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & x+\frac{1}{x-1}+\frac{1}{x^{2}}=x\centerdot \frac{x^{2}\left( x-1 \right)}{x^{2}\left( x-1 \right)}+\frac{1}{x-1}\centerdot \frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}\centerdot \frac{x-1}{x-1} \\   | ||
| + | & =\frac{x^{3}\left( x-1 \right)+x^{2}+\left( x-1 \right)}{x^{2}\left( x-1 \right)}=\frac{x^{4}-x^{3}+x^{2}+x-1}{x^{2}\left( x-1 \right)} \\   | ||
| + | \end{align}</math>  | ||
Revision as of 12:46, 16 September 2008
The denominators \displaystyle x-1 and \displaystyle x^{2} do not have a common denominator, so the lowest common denominator is \displaystyle x^{2}\left( x-1 \right). We treat all three terms so that they have a common denominator and then start simplifying:
\displaystyle \begin{align}
& x+\frac{1}{x-1}+\frac{1}{x^{2}}=x\centerdot \frac{x^{2}\left( x-1 \right)}{x^{2}\left( x-1 \right)}+\frac{1}{x-1}\centerdot \frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}\centerdot \frac{x-1}{x-1} \\ 
& =\frac{x^{3}\left( x-1 \right)+x^{2}+\left( x-1 \right)}{x^{2}\left( x-1 \right)}=\frac{x^{4}-x^{3}+x^{2}+x-1}{x^{2}\left( x-1 \right)} \\ 
\end{align}
