Solution 2.1:6b
From Förberedande kurs i matematik 1
m  (Lösning 2.1:6b moved to Solution 2.1:6b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The lowest common denominator for the three terms is   | 
| - | <  | + | <math>\left( x-2 \right)\left( x+3 \right)</math>  | 
| - | {{  | + | and we expand each term so that all terms have the same denominator:  | 
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \frac{x}{x-2}+\frac{x}{x+3}-2=\frac{x}{x-2}\centerdot \frac{x+3}{x+3}+\frac{x}{x+3}\centerdot \frac{x-2}{x-2}-2\centerdot \frac{\left( x-2 \right)\left( x+3 \right)}{\left( x-2 \right)\left( x+3 \right)} \\   | ||
| + | & =\frac{x\left( x+3 \right)+x\left( x-2 \right)-2\left( x-2 \right)\left( x+3 \right)}{\left( x-2 \right)\left( x+3 \right)} \\   | ||
| + | & =\frac{x^{2}+3x+x^{2}-2x-2\left( x^{2}+3x-2x-6 \right)}{\left( x-2 \right)\left( x+3 \right)} \\   | ||
| + | & =\frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{\left( x-2 \right)\left( x+3 \right)} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | Now, collect together the terms in the numerator:  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \frac{x}{x-2}+\frac{x}{x+3}-2=\frac{\left( x^{2}+x^{2}-2x^{2} \right)+\left( 3x-2x-6x+4x \right)+12}{\left( x-2 \right)\left( x+3 \right)} \\   | ||
| + | & =\frac{-x+12}{\left( x-2 \right)\left( x+3 \right)} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | NOTE: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.  | ||
Revision as of 10:53, 16 September 2008
The lowest common denominator for the three terms is \displaystyle \left( x-2 \right)\left( x+3 \right) and we expand each term so that all terms have the same denominator:
\displaystyle \begin{align}
& \frac{x}{x-2}+\frac{x}{x+3}-2=\frac{x}{x-2}\centerdot \frac{x+3}{x+3}+\frac{x}{x+3}\centerdot \frac{x-2}{x-2}-2\centerdot \frac{\left( x-2 \right)\left( x+3 \right)}{\left( x-2 \right)\left( x+3 \right)} \\ 
& =\frac{x\left( x+3 \right)+x\left( x-2 \right)-2\left( x-2 \right)\left( x+3 \right)}{\left( x-2 \right)\left( x+3 \right)} \\ 
& =\frac{x^{2}+3x+x^{2}-2x-2\left( x^{2}+3x-2x-6 \right)}{\left( x-2 \right)\left( x+3 \right)} \\ 
& =\frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{\left( x-2 \right)\left( x+3 \right)} \\ 
\end{align}
Now, collect together the terms in the numerator:
\displaystyle \begin{align}
& \frac{x}{x-2}+\frac{x}{x+3}-2=\frac{\left( x^{2}+x^{2}-2x^{2} \right)+\left( 3x-2x-6x+4x \right)+12}{\left( x-2 \right)\left( x+3 \right)} \\ 
& =\frac{-x+12}{\left( x-2 \right)\left( x+3 \right)} \\ 
\end{align}
NOTE: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.
