Solution 2.1:5b
From Förberedande kurs i matematik 1
m  (Lösning 2.1:5b moved to Solution 2.1:5b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | We can factorize the denominators as  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>y^{2}-2y=y\left( y-2 \right)</math>  | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | <math>y^{2}-4=\left( y-2 \right)\left( y+2 \right)</math>  | ||
| + | 		  [by the conjugate rule]  | ||
| + | |||
| + | and then we see that the terms' lowest common denominator is   | ||
| + | <math>y\left( y-2 \right)\left( y+2 \right)</math>  | ||
| + | because it is the product that contains the smallest number of factors which contain both   | ||
| + | <math>y\left( y-2 \right)</math>  | ||
| + | and   | ||
| + | <math>\left( y-2 \right)\left( y+2 \right)</math>  | ||
| + | .  | ||
| + | |||
| + | Now, we rewrite the fractions so that they have same denominators and start simplifying:  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & y^{2}-4=\left( y-2 \right)\left( y+2 \right) \\   | ||
| + | & y^{2}-2y=y\left( y-2 \right) \\   | ||
| + | & \frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4}=\frac{1}{y\left( y-2 \right)}\centerdot \frac{y+2}{y+2}-\frac{2}{\left( y-2 \right)\left( y+2 \right)}\centerdot \frac{y}{y} \\   | ||
| + | &  \\   | ||
| + | & =\frac{y+2}{y\left( y-2 \right)\left( y+2 \right)}-\frac{2y}{\left( y-2 \right)\left( y+2 \right)y} \\   | ||
| + | &  \\   | ||
| + | & =\frac{y+2-2y}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | The numerator can be rewritten as   | ||
| + | <math>-y+2=-\left( y-2 \right)</math>  | ||
| + | and we can eliminate the common factor   | ||
| + | <math>y-2</math>  | ||
| + | .  | ||
| + | |||
| + | |||
| + | <math>\frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-\left( y-2 \right)}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-1}{y\left( y+2 \right)}=-\frac{1}{y\left( y+2 \right)}</math>  | ||
Revision as of 09:15, 16 September 2008
We can factorize the denominators as
\displaystyle y^{2}-2y=y\left( y-2 \right)
\displaystyle y^{2}-4=\left( y-2 \right)\left( y+2 \right)
		  [by the conjugate rule]
and then we see that the terms' lowest common denominator is \displaystyle y\left( y-2 \right)\left( y+2 \right) because it is the product that contains the smallest number of factors which contain both \displaystyle y\left( y-2 \right) and \displaystyle \left( y-2 \right)\left( y+2 \right) .
Now, we rewrite the fractions so that they have same denominators and start simplifying:
\displaystyle \begin{align}
& y^{2}-4=\left( y-2 \right)\left( y+2 \right) \\ 
& y^{2}-2y=y\left( y-2 \right) \\ 
& \frac{1}{y^{2}-2y}-\frac{2}{y^{2}-4}=\frac{1}{y\left( y-2 \right)}\centerdot \frac{y+2}{y+2}-\frac{2}{\left( y-2 \right)\left( y+2 \right)}\centerdot \frac{y}{y} \\ 
&  \\ 
& =\frac{y+2}{y\left( y-2 \right)\left( y+2 \right)}-\frac{2y}{\left( y-2 \right)\left( y+2 \right)y} \\ 
&  \\ 
& =\frac{y+2-2y}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)} \\ 
\end{align}
The numerator can be rewritten as 
\displaystyle -y+2=-\left( y-2 \right)
and we can eliminate the common factor 
\displaystyle y-2
.
\displaystyle \frac{-y+2}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-\left( y-2 \right)}{y\left( y-2 \right)\left( y+2 \right)}=\frac{-1}{y\left( y+2 \right)}=-\frac{1}{y\left( y+2 \right)}
