Solution 2.1:4b
From Förberedande kurs i matematik 1
m  (Lösning 2.1:4b moved to Solution 2.1:4b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | When the expression   | 
| - | <  | + | <math>\left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right)</math>  | 
| - | {{  | + | is expanded out,   | 
| - | {{  | + | |
| - | <  | + | every term in the first bracket is multiplied by every term in the second bracket, i.e.  | 
| - | {{  | + | |
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right) \\   | ||
| + | & =1\centerdot 2+1\centerdot \left( -x \right)+1\centerdot x^{2}+1\centerdot x^{4}+x\centerdot 2+x\centerdot \left( -x \right) \\   | ||
| + | & +x\centerdot x^{2}+x\centerdot x^{4}+x^{2}\centerdot 2+x^{2}\centerdot \left( -x \right)+x^{2}\centerdot x^{2}+x^{2}\centerdot x^{4} \\   | ||
| + | & +x^{3}\centerdot 2+x^{3}\centerdot \left( -x \right)+x^{3}\centerdot x^{2}+x^{3}\centerdot x^{4} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | If we only want to know the coefficient in front of   | ||
| + | <math>x</math>, we do not need to carry out the complete expansion of the expression; it is sufficient to find those combinations of a term from the first bracket and a term from the second bracket which, when multiplied, give an   | ||
| + | <math>x^{1}</math>  | ||
| + | -term. In this case, we have two such pairs:   | ||
| + | <math>1</math>  | ||
| + | multiplied by -  | ||
| + | <math>x</math>  | ||
| + | and   | ||
| + | <math>x</math>  | ||
| + | multiplied by   | ||
| + | <math>2</math>  | ||
| + | ,  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right)=...+1\centerdot \left( -x \right)+x\centerdot 2+... \\   | ||
| + | &  \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | so that the coefficient in front of   | ||
| + | <math>x</math>  | ||
| + | is   | ||
| + | <math>-1+2=1</math>  | ||
| + | |||
| + | |||
| + | We obtain the coefficient in front of   | ||
| + | <math>x^{2}</math>  | ||
| + | by finding those combinations of a term from each bracket   | ||
| + | which give an   | ||
| + | <math>x^{2}</math>  | ||
| + | -term; these are  | ||
| + | |||
| + | |||
| + | <math>\left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right)=...+1\centerdot x^{2}+x\centerdot \left( -x \right)+x^{2}\centerdot 2+...</math>  | ||
| + | |||
| + | |||
| + | The coefficient in front of   | ||
| + | <math>x^{2}</math>  | ||
| + | is   | ||
| + | <math>1-1+2</math>  | ||
| + | .  | ||
Revision as of 14:24, 15 September 2008
When the expression \displaystyle \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right) is expanded out,
every term in the first bracket is multiplied by every term in the second bracket, i.e.
\displaystyle \begin{align}
& \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right) \\ 
& =1\centerdot 2+1\centerdot \left( -x \right)+1\centerdot x^{2}+1\centerdot x^{4}+x\centerdot 2+x\centerdot \left( -x \right) \\ 
& +x\centerdot x^{2}+x\centerdot x^{4}+x^{2}\centerdot 2+x^{2}\centerdot \left( -x \right)+x^{2}\centerdot x^{2}+x^{2}\centerdot x^{4} \\ 
& +x^{3}\centerdot 2+x^{3}\centerdot \left( -x \right)+x^{3}\centerdot x^{2}+x^{3}\centerdot x^{4} \\ 
\end{align}
If we only want to know the coefficient in front of 
\displaystyle x, we do not need to carry out the complete expansion of the expression; it is sufficient to find those combinations of a term from the first bracket and a term from the second bracket which, when multiplied, give an 
\displaystyle x^{1}
-term. In this case, we have two such pairs: 
\displaystyle 1
multiplied by -
\displaystyle x
and 
\displaystyle x
multiplied by 
\displaystyle 2
,
\displaystyle \begin{align}
& \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right)=...+1\centerdot \left( -x \right)+x\centerdot 2+... \\ 
&  \\ 
\end{align}
so that the coefficient in front of 
\displaystyle x
is 
\displaystyle -1+2=1
We obtain the coefficient in front of 
\displaystyle x^{2}
by finding those combinations of a term from each bracket 
which give an 
\displaystyle x^{2}
-term; these are
\displaystyle \left( 1+x+x^{2}+x^{3} \right)\left( 2-x+x^{2}+x^{4} \right)=...+1\centerdot x^{2}+x\centerdot \left( -x \right)+x^{2}\centerdot 2+...
The coefficient in front of 
\displaystyle x^{2}
is 
\displaystyle 1-1+2
.
