Solution 1.3:6f
From Förberedande kurs i matematik 1
m  (Lösning 1.3:6f moved to Solution 1.3:6f: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | We can factorize the exponents   | 
| - | <  | + | <math>40</math>  | 
| - | {{  | + | and   | 
| + | <math>56</math>  | ||
| + | as  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 40=4\centerdot 10=2\centerdot 2\centerdot 2\centerdot 5=2^{3}\centerdot 5 \\   | ||
| + | &  \\   | ||
| + | & 56=7\centerdot 8=7\centerdot 2\centerdot 4=7\centerdot 2\centerdot 2\centerdot 2=2^{3}\centerdot 7 \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | and we then see that they have   | ||
| + | <math>2^{3}=8</math>  | ||
| + | as a common factor. We can take this factor out as an "outer" exponent:  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 3^{40}=3^{5\centerdot 8}=\left( 3^{5} \right)^{8}=\left( 3\centerdot 3\centerdot 3\centerdot 3\centerdot 3 \right)^{8}=243^{8} \\   | ||
| + | &  \\   | ||
| + | & 2^{56}=2^{7\centerdot 8}=\left( 2^{7} \right)^{8}=\left( 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2 \right)^{8}=128^{8} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | This shows that   | ||
| + | <math>3^{40}=243^{8}</math>  | ||
| + | is bigger than   | ||
| + | <math>2^{56}=128^{8}</math>  | ||
Revision as of 13:01, 15 September 2008
We can factorize the exponents \displaystyle 40 and \displaystyle 56 as
\displaystyle \begin{align}
& 40=4\centerdot 10=2\centerdot 2\centerdot 2\centerdot 5=2^{3}\centerdot 5 \\ 
&  \\ 
& 56=7\centerdot 8=7\centerdot 2\centerdot 4=7\centerdot 2\centerdot 2\centerdot 2=2^{3}\centerdot 7 \\ 
\end{align}
and we then see that they have 
\displaystyle 2^{3}=8
as a common factor. We can take this factor out as an "outer" exponent:
\displaystyle \begin{align}
& 3^{40}=3^{5\centerdot 8}=\left( 3^{5} \right)^{8}=\left( 3\centerdot 3\centerdot 3\centerdot 3\centerdot 3 \right)^{8}=243^{8} \\ 
&  \\ 
& 2^{56}=2^{7\centerdot 8}=\left( 2^{7} \right)^{8}=\left( 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2 \right)^{8}=128^{8} \\ 
\end{align}
This shows that 
\displaystyle 3^{40}=243^{8}
is bigger than 
\displaystyle 2^{56}=128^{8}
