Solution 1.3:6d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 1.3:6d moved to Solution 1.3:6d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | One way to compare the two numbers is to rewrite the power   | 
| - | <  | + | <math>\left( 5^{\frac{1}{3}} \right)^{4}</math>  | 
| - | {{  | + | so that it has the same exponent as   | 
| + | <math>400^{\frac{1}{3}}</math>,  | ||
| + | |||
| + | |||
| + | <math>\left( 5^{\frac{1}{3}} \right)^{4}=5^{\frac{1}{3}\centerdot 4}=5^{4\centerdot \frac{1}{3}}=\left( 5^{4} \right)^{\frac{1}{3}}=\left( 5\centerdot 5\centerdot 5\centerdot 5 \right)^{\frac{1}{3}}=625^{\frac{1}{3}}</math>.  | ||
| + | |||
| + | Now, we see that   | ||
| + | <math>\left( 5^{\frac{1}{3}} \right)^{4}>400^{\frac{1}{3}}</math>, because   | ||
| + | <math>625>400</math>  | ||
| + | and the exponent   | ||
| + | <math>\frac{1}{3}</math>  | ||
| + | is positive.  | ||
Revision as of 12:56, 15 September 2008
One way to compare the two numbers is to rewrite the power \displaystyle \left( 5^{\frac{1}{3}} \right)^{4} so that it has the same exponent as \displaystyle 400^{\frac{1}{3}},
\displaystyle \left( 5^{\frac{1}{3}} \right)^{4}=5^{\frac{1}{3}\centerdot 4}=5^{4\centerdot \frac{1}{3}}=\left( 5^{4} \right)^{\frac{1}{3}}=\left( 5\centerdot 5\centerdot 5\centerdot 5 \right)^{\frac{1}{3}}=625^{\frac{1}{3}}.
Now, we see that \displaystyle \left( 5^{\frac{1}{3}} \right)^{4}>400^{\frac{1}{3}}, because \displaystyle 625>400 and the exponent \displaystyle \frac{1}{3} is positive.
