Solution 1.3:6b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 1.3:6b moved to Solution 1.3:6b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus...  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>0.4^{-3}>0.5^{-3}</math>  | ||
| + | |||
| + | |||
| + | Another way to see this is to rewrite the two powers as  | ||
| + | |||
| + | |||
| + | <math>0.5^{-3}=\frac{1}{0.5^{3}}</math>  | ||
| + | 	and 	  | ||
| + | <math>0.4^{-3}=\frac{1}{0.4^{3}}</math>  | ||
| + | |||
| + | |||
| + | and because   | ||
| + | <math>0.5^{3}>0.4^{3}</math>  | ||
| + | (see exercise a), it follows that  | ||
| + | |||
| + | |||
| + | <math>\frac{1}{0.4^{3}}>\frac{1}{0.5^{3}}</math>  | ||
| + | |||
| + | |||
| + | i.e.    | ||
| + | <math>0.4^{-3}>0.5^{-3}</math>  | ||
Revision as of 12:52, 15 September 2008
When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus...
\displaystyle 0.4^{-3}>0.5^{-3}
Another way to see this is to rewrite the two powers as
\displaystyle 0.5^{-3}=\frac{1}{0.5^{3}}
	and 	
\displaystyle 0.4^{-3}=\frac{1}{0.4^{3}}
and because 
\displaystyle 0.5^{3}>0.4^{3}
(see exercise a), it follows that
\displaystyle \frac{1}{0.4^{3}}>\frac{1}{0.5^{3}}
i.e.  
\displaystyle 0.4^{-3}>0.5^{-3}
