Solution 1.3:5f
From Förberedande kurs i matematik 1
m  (Lösning 1.3:5f moved to Solution 1.3:5f: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The whole expression is quite complicated, so it can be useful to simplify the terms    | 
| - | <  | + | <math>\left( 125^{\frac{1}{3}} \right)^{2}</math>  | 
| - | {{  | + | and   | 
| + | <math>\left( 27^{\frac{1}{3}} \right)^{-2}</math>  | ||
| + | first:  | ||
| + | |||
| + | |||
| + | <math>\left( 125^{\frac{1}{3}} \right)^{2}=125^{\frac{1}{3}\centerdot 2}=125^{\frac{2}{3}}</math>  | ||
| + | |||
| + | |||
| + | |||
| + | <math>\left( 27^{\frac{1}{3}} \right)^{-2}=27^{\frac{1}{3}\centerdot \left( -2 \right)}=27^{-\frac{2}{3}}</math>  | ||
| + | |||
| + | |||
| + | Then, the bases   | ||
| + | <math>125,\ \ 27</math>  | ||
| + | and   | ||
| + | <math>9</math>  | ||
| + | can be rewritten as  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 125=5\centerdot 25=5\centerdot 5\centerdot 5=5^{3} \\   | ||
| + | &  \\   | ||
| + | & 27=3\centerdot 9=3\centerdot 3\centerdot 3=3^{3} \\   | ||
| + | &  \\   | ||
| + | & 9=3\centerdot 3=3^{2} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | With the help of the power rules,  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left( 125^{\frac{1}{3}} \right)^{2}\centerdot \left( 27^{\frac{1}{3}} \right)^{-2}\centerdot 9^{\frac{1}{2}}=125^{\frac{2}{3}}\centerdot 27^{-\frac{2}{3}}\centerdot 9^{\frac{1}{2}} \\   | ||
| + | &  \\   | ||
| + | & =\left( 5^{3} \right)^{\frac{2}{3}}\centerdot \left( 3^{3} \right)^{-\frac{2}{3}}\centerdot \left( 3^{2} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{2}{3}}\centerdot 3^{3\centerdot \left( -\frac{2}{3} \right)}\centerdot 3^{2\centerdot \frac{1}{2}} \\   | ||
| + | &  \\   | ||
| + | & =5^{2}\centerdot 3^{-2}\centerdot 3^{1}=5^{2}\centerdot 3^{-2+1}=5^{2}\centerdot 3^{-1}=5\centerdot 5\centerdot \frac{1}{3} \\   | ||
| + | &  \\   | ||
| + | & \frac{25}{3} \\   | ||
| + | \end{align}</math>  | ||
Revision as of 12:49, 15 September 2008
The whole expression is quite complicated, so it can be useful to simplify the terms \displaystyle \left( 125^{\frac{1}{3}} \right)^{2} and \displaystyle \left( 27^{\frac{1}{3}} \right)^{-2} first:
\displaystyle \left( 125^{\frac{1}{3}} \right)^{2}=125^{\frac{1}{3}\centerdot 2}=125^{\frac{2}{3}}
\displaystyle \left( 27^{\frac{1}{3}} \right)^{-2}=27^{\frac{1}{3}\centerdot \left( -2 \right)}=27^{-\frac{2}{3}}
Then, the bases 
\displaystyle 125,\ \ 27
and 
\displaystyle 9
can be rewritten as
\displaystyle \begin{align}
& 125=5\centerdot 25=5\centerdot 5\centerdot 5=5^{3} \\ 
&  \\ 
& 27=3\centerdot 9=3\centerdot 3\centerdot 3=3^{3} \\ 
&  \\ 
& 9=3\centerdot 3=3^{2} \\ 
\end{align}
With the help of the power rules,
\displaystyle \begin{align}
& \left( 125^{\frac{1}{3}} \right)^{2}\centerdot \left( 27^{\frac{1}{3}} \right)^{-2}\centerdot 9^{\frac{1}{2}}=125^{\frac{2}{3}}\centerdot 27^{-\frac{2}{3}}\centerdot 9^{\frac{1}{2}} \\ 
&  \\ 
& =\left( 5^{3} \right)^{\frac{2}{3}}\centerdot \left( 3^{3} \right)^{-\frac{2}{3}}\centerdot \left( 3^{2} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{2}{3}}\centerdot 3^{3\centerdot \left( -\frac{2}{3} \right)}\centerdot 3^{2\centerdot \frac{1}{2}} \\ 
&  \\ 
& =5^{2}\centerdot 3^{-2}\centerdot 3^{1}=5^{2}\centerdot 3^{-2+1}=5^{2}\centerdot 3^{-1}=5\centerdot 5\centerdot \frac{1}{3} \\ 
&  \\ 
& \frac{25}{3} \\ 
\end{align}
