Solution 1.3:4a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 1.3:4a moved to Solution 1.3:4a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Because the base is the same in both factors, the exponents can be combined according to the power rules  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>2^{9}\centerdot 2^{-7}=2^{9-7}=2^{2}=4</math>  | ||
| + | |||
| + | |||
| + | Alternatively, the expressions for the powers can be expanded completely and then cancelled out,  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 2^{9-7}=2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot \frac{1}{2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2} \\   | ||
| + | &  \\   | ||
| + | & =2\centerdot 2=4 \\   | ||
| + | \end{align}</math>  | ||
Revision as of 11:45, 15 September 2008
Because the base is the same in both factors, the exponents can be combined according to the power rules
\displaystyle 2^{9}\centerdot 2^{-7}=2^{9-7}=2^{2}=4
Alternatively, the expressions for the powers can be expanded completely and then cancelled out,
\displaystyle \begin{align}
& 2^{9-7}=2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot \frac{1}{2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2\centerdot 2} \\ 
&  \\ 
& =2\centerdot 2=4 \\ 
\end{align}
