Solution 1.3:1d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 1.3:1d moved to Solution 1.3:1d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | By using the power rules, we can rewrite the expression,  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>\left( \frac{2}{3} \right)^{-3}=\frac{2^{-3}}{3^{-3}}=\frac{\frac{1}{2^{3}}}{\frac{1}{3^{3}}}=\frac{\frac{1}{2^{3}}\centerdot 3^{3}}{\frac{1}{3^{3}}\centerdot 3^{3}}=\frac{\frac{3^{3}}{2^{3}}}{1}=\frac{3^{3}}{2^{3}}</math>  | ||
| + | |||
| + | and then carry out the calculation:  | ||
| + | |||
| + | |||
| + | <math>\frac{3^{3}}{2^{3}}=\frac{3\centerdot 3\centerdot 3}{2\centerdot 2\centerdot 2}=\frac{27}{8}</math>  | ||
Revision as of 11:10, 15 September 2008
By using the power rules, we can rewrite the expression,
\displaystyle \left( \frac{2}{3} \right)^{-3}=\frac{2^{-3}}{3^{-3}}=\frac{\frac{1}{2^{3}}}{\frac{1}{3^{3}}}=\frac{\frac{1}{2^{3}}\centerdot 3^{3}}{\frac{1}{3^{3}}\centerdot 3^{3}}=\frac{\frac{3^{3}}{2^{3}}}{1}=\frac{3^{3}}{2^{3}}
and then carry out the calculation:
\displaystyle \frac{3^{3}}{2^{3}}=\frac{3\centerdot 3\centerdot 3}{2\centerdot 2\centerdot 2}=\frac{27}{8}
