Solution 3.4:1c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.4:1c moved to Solution 3.4:1c: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The equation has the same form as the equation in exercise c and we can therefore use the same strategy.  | 
| - | <  | + | |
| - | {{  | + | First, we take logs of both sides,  | 
| + | |||
| + | |||
| + | <math>\ln \left( 3e^{x} \right)=\ln \left( 7\centerdot 2^{x} \right)</math>  | ||
| + | |||
| + | |||
| + | and use the log laws to make   | ||
| + | <math>x</math>  | ||
| + | more accessible:  | ||
| + | |||
| + | |||
| + | <math>\ln 3+x\centerdot \ln e=\ln 7+x\centerdot \ln 2</math>  | ||
| + | |||
| + | |||
| + | Then, collect together the <math>x</math> terms on the left-hand side:  | ||
| + | |||
| + | |||
| + | <math>x\left( \ln e-\ln 2 \right)=\ln 7-\ln 3</math>  | ||
| + | |||
| + | |||
| + | The solution is now  | ||
| + | |||
| + | |||
| + | <math>x=\frac{\ln 7-\ln 3}{\ln e-\ln 2}=\frac{\ln 7-\ln 3}{1-\ln 2}</math>  | ||
Revision as of 13:22, 12 September 2008
The equation has the same form as the equation in exercise c and we can therefore use the same strategy.
First, we take logs of both sides,
\displaystyle \ln \left( 3e^{x} \right)=\ln \left( 7\centerdot 2^{x} \right)
and use the log laws to make 
\displaystyle x
more accessible:
\displaystyle \ln 3+x\centerdot \ln e=\ln 7+x\centerdot \ln 2
Then, collect together the \displaystyle x terms on the left-hand side:
\displaystyle x\left( \ln e-\ln 2 \right)=\ln 7-\ln 3
The solution is now
\displaystyle x=\frac{\ln 7-\ln 3}{\ln e-\ln 2}=\frac{\ln 7-\ln 3}{1-\ln 2}
