Solution 2.1:1d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
			|||
| Line 13: | Line 13: | ||
<math>\qquad \frac{x^3y^2}{xy}=\frac{x\cdot x\cdot x \cdot y \cdot y}{x\cdot y} = x\cdot x\cdot y = x^2y </math>  | <math>\qquad \frac{x^3y^2}{xy}=\frac{x\cdot x\cdot x \cdot y \cdot y}{x\cdot y} = x\cdot x\cdot y = x^2y </math>  | ||
| - | <!-- <center> [[  | + | <!-- <center> [[Image:2_1_1d.gif]] </center>-->  | 
{{NAVCONTENT_STOP}}  | {{NAVCONTENT_STOP}}  | ||
Revision as of 06:32, 21 August 2008
After \displaystyle x^3y^2 are multiplied inside the bracket, we can eliminate factors which occur in both the numerator and denominator.
\displaystyle \qquad \begin{align} x^3y^2\Big( \frac 1y - \frac 1{xy} +1 \Big) &= x^3y^2 \cdot\frac 1y -x^3y^2 \cdot \frac 1{xy} +x^3y^2\cdot 1 \\ &=\frac{x^3y^2}{y} -\frac{x^3y^2}{xy} +x^3y^2 \\ &=x^3y - x^2y +x^3y^2 \end{align}
where we have used
\displaystyle \qquad \frac{x^3y^2}{y}= \frac{x^3\cdot y\cdot y}{y}= x^3y ,
\displaystyle \qquad \frac{x^3y^2}{xy}=\frac{x\cdot x\cdot x \cdot y \cdot y}{x\cdot y} = x\cdot x\cdot y = x^2y
