Solution 2.1:3f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			| Line 4: | Line 4: | ||
<math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>  | <math> \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1 </math>  | ||
| - | and   | + | and since <math> y^2 +2y+1=(y+1)^2 </math> we obtain  | 
<math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>  | <math> \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2 </math>  | ||
<!--<center> [[Bild:2_1_3f.gif]] </center>-->  | <!--<center> [[Bild:2_1_3f.gif]] </center>-->  | ||
{{NAVCONTENT_STOP}}  | {{NAVCONTENT_STOP}}  | ||
Revision as of 13:24, 13 August 2008
Treating \displaystyle 4x as one term, we can write
\displaystyle \qquad 16x^2+8x+1=(4x)^2 +2\cdot 4x +1
and since \displaystyle y^2 +2y+1=(y+1)^2 we obtain
\displaystyle \qquad (4x)^2 +2\cdot 4x +1= (4x+1)^2
