Solution 2.1:1b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			| Line 1: | Line 1: | ||
{{NAVCONTENT_START}}  | {{NAVCONTENT_START}}  | ||
| - | When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>  | + | When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>;  | 
| + | <math>  | ||
| + | \qquad   | ||
| + | \begin{align}  | ||
| + | (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy \\   | ||
| + | &= xy+x^2y-x^3y   | ||
| + | \end{align}   | ||
| + | </math>  | ||
<!-- <center> [[Bild:2_1_1b.gif]] </center> -->  | <!-- <center> [[Bild:2_1_1b.gif]] </center> -->  | ||
{{NAVCONTENT_STOP}}  | {{NAVCONTENT_STOP}}  | ||
Revision as of 08:33, 13 August 2008
When the factor \displaystyle xy is multiplied by the expression inside the brackets, \displaystyle 1+x+x^2 , the distributive rule gives that all three terms \displaystyle 1, \displaystyle x and \displaystyle -x^2 are multiplied by \displaystyle xy;
\displaystyle \qquad \begin{align} (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy \\ &= xy+x^2y-x^3y \end{align}
