1.1 Övningar

Aus Förberedande kurs i matematik 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (12:33, 7. Aug. 2008) (bearbeiten) (rückgängig)
K
 
Zeile 17: Zeile 17:
|-
|-
| valign="top" |b)
| valign="top" |b)
-
|width="100%"| For what values of <math>x</math>-is <math>f^{\,\prime}(x)=0</math>?
+
|width="100%"| For what values of <math>x</math> is <math>f^{\,\prime}(x)=0</math>?
|-
|-
| valign="top" |c)
| valign="top" |c)
-
|width="100%"| In which interval(s) is<math>f^{\,\prime}(x)</math> negative?
+
|width="100%"| In which interval(s) is <math>f^{\,\prime}(x)</math> negative?
|}
|}
(Each square in the grid of the figure has width and height 1.)
(Each square in the grid of the figure has width and height 1.)

Aktuelle Version

       Theory          exercises      

exercise 1.1:1

The graph for \displaystyle f(x) is shown in the figure.

a) What are the signs of \displaystyle f^{\,\prime}(-5) and \displaystyle f^{\,\prime}(1)?
b) For what values of \displaystyle x is \displaystyle f^{\,\prime}(x)=0?
c) In which interval(s) is \displaystyle f^{\,\prime}(x) negative?

(Each square in the grid of the figure has width and height 1.)

[Image]

exercise 1.1:2

Determine the derivative \displaystyle f^{\,\prime}(x) when

a) \displaystyle f(x) = x^2 -3x +1 b) \displaystyle f(x)=\cos x -\sin x c) \displaystyle f(x)= e^x-\ln x
d) \displaystyle f(x)=\sqrt{x} e) \displaystyle f(x) = (x^2-1)^2 f) \displaystyle f(x)= \cos (x+\pi/3)

exercise 1.1:3

A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?

exercise 1.1:4

Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).

exercise 1.1:5

Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).