3.2 Polär form
Aus Förberedande kurs i matematik 2
K |
|||
(Der Versionsvergleich bezieht 7 dazwischen liegende Versionen mit ein.) | |||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{ | + | {{Vald flik|[[3.2 Polär form|Theory]]}} |
- | {{ | + | {{Ej vald flik|[[3.2 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Content:''' |
- | * | + | * The complex plane |
- | * Addition | + | * Addition and subtraction in the complex plane |
- | * | + | * Modulus and argument |
- | * | + | * Polar form |
- | * | + | * Multiplication and division in polar form |
- | * | + | * Multiplication with ''i'' in the complex plane |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learnt: | |
- | + | ||
- | + | ||
- | + | ||
+ | *A geometric understanding of complex numbers and their arithmetic operations in the plane. | ||
+ | * To be able to convert the complex number between the form ''a'' + ''ib'' and polar form. | ||
}} | }} | ||
- | == | + | == The complex plane == |
+ | |||
+ | As a complex number <math>z=a+bi</math> consists of a real part and <math>a</math> and an imaginary part <math>b</math>, one can consider <math>z</math> to be an ordered pair of numbers <math>(a,b)</math> and interpreted as a point in a coordinate system. We thus construct a coordinate system by drawing an imaginary axis ( a number axis having a unit <math>i</math>) perpendicular to a real axis (the real-number axis). We can now designate each complex number as a point in this coordinate system, and conversely each point defines a unique complex number. | ||
- | Eftersom ett komplext tal <math>z=a+bi</math> består av en realdel <math>a</math> och en imaginärdel <math>b</math>, så kan <math>z</math> betraktas som ett ordnat talpar <math>(a,b)</math> och tolkas som en punkt i ett koordinatsystem. | ||
- | Man bildar därför ett koordinatsystem genom att ställa en imaginär axel (en tallinje med enheten <math>i</math>) vinkelrät mot en reell axel (den reella tallinjen). Vi kan nu beskriva varje komplext tal med en punkt i detta koordinatsystem, och varje punkt beskriver ett unikt komplext tal. | ||
<center>{{:3.2 - Figur - Komplexa talplanet}}</center> | <center>{{:3.2 - Figur - Komplexa talplanet}}</center> | ||
- | Denna geometriska tolkning av de komplexa talen kallas det ''komplexa talplanet''. | ||
+ | This geometric interpretation of the complex numbers is called the ''complex plane''. | ||
- | ''Anm:'' De reella talen, dvs. alla komplexa tal med imaginärdel 0, ligger alltså längs den reella axeln. Man kan därför se utvidgningen av talsystemet från <math>\mathbb{R}</math> (de reella talen) till <math>\mathbb{C}</math> (de komplexa talen) som att tillföra en ny dimension till den redan fyllda tallinjen. | ||
+ | ''Note:'' The real numbers, that is all complex numbers with imaginary part 0, lie along the real axis. One can therefore regards the extension of the number system from <math>\mathbb{R}</math> (the real numbers) to <math>\mathbb{C}</math> (the complex numbers) to mean that one adjoins an extra dimension to the completely filled real-number axis . | ||
- | Addition av komplexa tal får helt naturligt en enkel tolkning i det komplexa talplanet och sker geometriskt på samma sätt som vid addition av vektorer: | ||
- | + | Addition of complex numbers has a quite natural and simple interpretation in the complex plane and is geometrically the same method as vector addition. Subtraktion can be seen as the addition of the corresponding negative numbers, that is <math>z-w=z+(-w)</math>. | |
- | + | ||
- | Subtraktion | + | |
- | + | ||
- | + | ||
+ | {| width="100%" align="center" | ||
+ | | width="10%" | | ||
+ | | width="35%" align="center" |{{:3.2 - Figur - Addition av komplexa tal}} | ||
+ | | width="10%" | | ||
+ | | width="35%" align="center" |{{:3.2 - Figur - Subtraktion av komplexa tal}} | ||
+ | | width="10%" | | ||
+ | |- | ||
+ | || | ||
+ | | valign="top" |<small> Geometrically the number ''z'' + ''w'' is obtained by considering a hypothetical line segment from 0 to ''w'' which is parallel-displaced so that its initial point at 0 is moved to z. Then this line segments terminal point w lands at the point ''z'' + ''w''.</small> | ||
+ | || | ||
+ | | valign="top" |<small>The subtraction ''z'' - ''w'' can be written as ''z'' + (-''w'') and can therefore be interpreted geometrically as a hypothetical line segment from 0 to -''w'' is parallel-displaced so that its initial point at 0 is moved to ''z''. Then this line segments terminal point -''w'' lands at the point ''z'' - ''w''.</small> | ||
+ | || | ||
+ | |} | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
- | + | Given <math>z=2+i</math> and <math>w=-3-i</math>. Indicate <math>z</math>, <math>w</math>, <math>\overline{z}</math>, <math>\overline{z}-\overline{w}</math> and <math>z-w</math> in the complex plane. | |
+ | {| width="100%" | ||
+ | | width="100%" |We have that | ||
+ | *<math>\overline{z}=2-i\,</math>, | ||
+ | *<math>\overline{w}=-3+i\,</math>, | ||
+ | *<math>z-w=2+i-(-3-i)</math><br/><math>\phantom{z-w}{}=5+2i\,</math>, | ||
+ | *<math>\overline{z} -\overline{w} = 2-i -(-3+i)</math><br/><math>\phantom{\overline{z} -\overline{w}}{}=5-2i\quad ({}=\overline{z-w})\,</math>. | ||
+ | ||{{:3.2 - Figur - Komplexa talplanet med z, w, z*, z - w och z* - w* markerade}} | ||
+ | |} | ||
- | + | Note that complex conjugated numbers are mirror images in the real axis. | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
- | + | Indicate in the complex plane all numbers <math>z</math> which meet the following conditions: | |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\mathop{\rm Re} z \ge 3</math></li> | + | <li><math>\mathop{\rm Re} z \ge 3\,</math>,</li> |
- | <li><math> -1 < \mathop{\rm Im} z \le 2</math></li> | + | <li><math> -1 < \mathop{\rm Im} z \le 2\,</math>.</li> |
</ol> | </ol> | ||
- | + | The first inequality defines the region in the figure on the left below, and the second inequality defines the region in the figure on the right below. | |
+ | |||
{| align="center" width="80%" | {| align="center" width="80%" | ||
Zeile 82: | Zeile 91: | ||
| width="5%" | | | width="5%" | | ||
||{{:3.2 - Figur - Området -1 mindre än Im z ≤ 2}} | ||{{:3.2 - Figur - Området -1 mindre än Im z ≤ 2}} | ||
+ | |- | ||
+ | | valign="top" |<small> All the numbers that satisfy Re ''z'' ≥ 3 have a real part that is greater than or equal to 3. These figures form the shaded semi-plane in the figure. </small> | ||
+ | || | ||
+ | | valign="top" |<small>Numbers that satisfy -1 < Im ''z'' ≤ 2 have an imaginary part that is between -1 and 2. These numbers are therefore in the ribbon-like region marked in the figure. The lower horizontal line is dotted and that means that points on that line do not belong to the coloured region. </small> | ||
|} | |} | ||
</div> | </div> | ||
- | == | + | == Absolute value == |
- | + | The real numbers can be arranged in order of magnitude, that is. we can determine whether a real number is greater than another, the further to the right on the real number line the greater the number. | |
- | + | For the complex numbers this is not possibile. We cannot decide which is the larger of e.g. <math>z=1-i</math> and <math>w=-1+i</math> . With the help of the concept of ''absolute value'' however, we can define a measure of the size of a complex number. | |
- | + | For a complex number <math>z=a+ib</math> the absolute value <math>|\,z\,|</math> is defined as <br\><br\> | |
<div class="regel">{{Fristående formel||<math>|\,z\,|=\sqrt{a^2+b^2}\,\mbox{.}</math>}}</div> | <div class="regel">{{Fristående formel||<math>|\,z\,|=\sqrt{a^2+b^2}\,\mbox{.}</math>}}</div> | ||
- | + | We see that <math>|\,z\,|</math> is a real number, and that <math>|\,z\,|\ge 0</math>. For a real number <math>b = 0</math> and then <math>|\,z\,|=\sqrt{a^2}=|\,a\,|</math>, which is consistent with the usual definition of an absolute value of a real number. Geometrically the absolute value is the distance from the number <math>z=a+ib</math> (the point <math>(a, b)</math>) to <math>z = 0</math> (origin), according to Pythagoras theorem. | |
+ | |||
<center>{{:3.2 - Figur - Beloppet av z}}</center> | <center>{{:3.2 - Figur - Beloppet av z}}</center> | ||
- | == | + | == Distance between complex numbers == |
- | + | With the help of the formula for the distance between points in a coordinate system one can obtain an important and useful interpretation of the absolute value. The distance <math>s</math> between the two complex numbers <math>z=a+ib</math> and <math>w=c+id</math> (see fig.) can with the help of the Formula for distance be written as | |
<div class="regel">{{Fristående formel||<math>s=\sqrt{(a-c)^2+(b-d)^2}\,\mbox{.}</math>}}</div> | <div class="regel">{{Fristående formel||<math>s=\sqrt{(a-c)^2+(b-d)^2}\,\mbox{.}</math>}}</div> | ||
Zeile 110: | Zeile 124: | ||
<center>{{:3.2 - Figur - Avstånd mellan z och w}}</center> | <center>{{:3.2 - Figur - Avstånd mellan z och w}}</center> | ||
- | Eftersom <math>z-w=(a-c)+i(b-d)</math>, så får man att | ||
- | <center><math>|\,z-w\,|=\sqrt{(a-c)^2+(b-d)^2}={}</math> | + | Since <math>z-w=(a-c)+i(b-d)</math>, one gets |
+ | |||
+ | <center><math>|\,z-w\,|=\sqrt{(a-c)^2+(b-d)^2}={}</math> distance between the numbers <math>z</math> and <math>w</math>.</center> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
- | + | Indicate the following sets in the complex plane: | |
{| width="100%" | {| width="100%" | ||
Zeile 127: | Zeile 142: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The equation describes all numbers whose distance to the origin is 2. These numbers describe in the complex plane a circle with radius 2 and its centre at the origin. </li> | |
</ol> | </ol> | ||
| width="5%" | | | width="5%" | | ||
Zeile 136: | Zeile 151: | ||
| width="95%" | | | width="95%" | | ||
<ol type="a" start="2"> | <ol type="a" start="2"> | ||
- | <li><math>\,\, |\,z- | + | <li><math>\,\, |\,z-2\,|=1</math> |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | This equation is satisfied by all the numbers, whose distance from the number 2 is equal to 1, i.e. a circle of radius 1 and with its centre at <math>z = 2</math>.</li> | |
</ol> | </ol> | ||
| width="5%" | | | width="5%" | | ||
- | ||{{:3.2 - Figur - Cirkeln ∣z - | + | ||{{:3.2 - Figur - Cirkeln ∣z - 2∣ = 1}} |
|} | |} | ||
Zeile 151: | Zeile 166: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The left-hand side can be written <math>|\,z-(-2+i)\,|</math>, which means all the numbers at a distance <math>{}\le 2</math> from the number <math>-2+i</math>, that is a circular disc a with a radius of 2 and its centre at <math>-2+i</math>.</li> | |
</ol> | </ol> | ||
| width="5%" | | | width="5%" | | ||
Zeile 163: | Zeile 178: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The set given is given by any number whose distance from <math>z=2+3i</math> is between <math>\frac{1}{2}</math> and <math>1</math>.</li> | |
</ol> | </ol> | ||
| width="5%" | | | width="5%" | | ||
Zeile 172: | Zeile 187: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
- | + | Indicate in the complex plane all numbers <math>z</math> satisfying the following | |
Zeile 182: | Zeile 197: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The first inequality gives the points on and inside a circle with radius 3 and center at <math>2i</math>. The second inequality is a vertical strip of points with their real part between 1 and 2. The area satisfying both inequalities is given by the points which lie both within the circle and within the strip. | |
</li> | </li> | ||
<br/> | <br/> | ||
Zeile 188: | Zeile 203: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The equation can be written as <math>|\,z-(-1)\,|=|\,z-2\,|</math>. This shows then that <math>z</math> should be at an equal distance from <math>-1</math> and <math>2</math>. This condition is met by all the numbers <math>z</math> that have a real part <math>1/2</math>. | |
</li> | </li> | ||
</ol> | </ol> | ||
Zeile 197: | Zeile 212: | ||
||{{:3.2 - Figur - Området ∣z + 1∣ = ∣z - 2∣}} | ||{{:3.2 - Figur - Området ∣z + 1∣ = ∣z - 2∣}} | ||
|- | |- | ||
- | ||<small> | + | ||<small> The shaded region consists of the points that satisfy the inequalities |''z'' - 2i| ≤ 3 and 1 ≤ Re ''z'' ≤ 2.</small> |
|| | || | ||
- | ||<small> | + | ||<small>The points that satisfy the equation |''z'' + 1| = |''z'' - 2| lie on the line with real part equal to 1/2.</small> |
|} | |} | ||
Zeile 205: | Zeile 220: | ||
- | == | + | == Polar form == |
+ | |||
+ | Instead of representing a complex number <math>z=x+iy</math> by its rectangular coordinates <math>(x,y)</math> one can use polar coordinates. This means that one represents a numbers location in the complex plane by its distance <math>r</math> to the origin, and the angle <math>\alpha</math>, made by the positive real-line axis and the line from the origin to the number (see the figure). | ||
- | I stället för att ange ett komplext tal <math>z=x+iy</math> i dess rektangulära koordinater <math>(x,y)</math> kan man använda polära koordinater. Detta innebär att man anger talets läge i det komplexa talplanet genom dess avstånd, <math>r</math>, till origo, samt den vinkel <math>\alpha</math> som bildas mellan den positiva ''x''-axeln och sträckan från origo till talet (se figuren). | ||
<center>{{:3.2 - Figur - Polär form av z}}</center> | <center>{{:3.2 - Figur - Polär form av z}}</center> | ||
- | + | ||
+ | Since <math>\,\cos\alpha = x/r\,</math> and <math>\,\sin\alpha = y/r\,</math> then <math>\,x = r\cos\alpha\,</math> and <math>\,y= r\sin\alpha</math>. The number <math>z=x+iy</math> can be written as | ||
<div class="regel">{{Fristående formel||<math>z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{,}</math>}}</div> | <div class="regel">{{Fristående formel||<math>z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{,}</math>}}</div> | ||
- | + | which is called the ''polar form'' of a complex number <math>z</math>. The angle <math>\alpha</math> is called the ''argument'' of <math>z</math> and is written | |
<div class="regel">{{Fristående formel||<math>\alpha=\arg\,z\,\mbox{.}</math>}}</div> | <div class="regel">{{Fristående formel||<math>\alpha=\arg\,z\,\mbox{.}</math>}}</div> | ||
- | + | The angle <math>\alpha</math>, for example, can be determined by solving the equation <math>\tan\alpha=y/x</math>. This equation, however, has a number of solutions, so we must ensure that we choose the solution <math>\alpha</math> that allows <math>z= r(\cos\alpha + i\sin\alpha)</math> to end up in the correct quadrant. | |
- | + | The argument for a complex number is not uniquely determined because angles that differ by <math>2\pi</math> indicate the same direction in the complex plane. Normally, one uses for the argument the angle between 0 and <math>2\pi</math> or between <math>-\pi</math> and <math>\pi</math>. | |
- | + | The real number <math>r</math>, the distance to the origin as we have already seen, is the absolute value of <math>z</math>, | |
- | <div class="regel">{{Fristående formel||<math>r=\sqrt{x^2+y^2}=|\,z\,|</math>}}</div> | + | <div class="regel">{{Fristående formel||<math>r=\sqrt{x^2+y^2}=|\,z\,|\,\mbox{.}</math>}}</div> |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
- | + | Write the following complex numbers in polar form: | |
<ol type="a"> | <ol type="a"> | ||
<li><math>\,\,-3</math> | <li><math>\,\,-3</math> | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | We have that<math>|\,-3\,|=3</math> and <math>\arg (-3)=\pi</math>, which means that <math>\ -3=3(\cos\pi+i\,\sin\pi)</math>. | |
</li> | </li> | ||
Zeile 243: | Zeile 260: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | We have that <math>|\,i\,|=1</math> and <math>\arg i = \pi/2</math> which in polar form is <math>\ i=\cos(\pi/2)+i\,\sin(\pi/2)\,</math>. | |
</li> | </li> | ||
Zeile 249: | Zeile 266: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The formula for a the absolut value of a complex number gives <math>|\,1-i\,|=\sqrt{1^2+(-1)^2}=\sqrt{2}</math>. The complex number lies in the fourth quadrant and has an angl <math>\pi/4</math> with the positive real axis, which gives <math>\arg (1-i)=2\pi-\pi/4=7\pi/4</math>. Thus <math>\ 1-i=\sqrt{2}\,\bigl(\cos(7\pi/4)+i\sin(7\pi/4)\,\bigr)</math>. | |
</li> | </li> | ||
Zeile 255: | Zeile 272: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The absolute value is the easiest to calculate | |
{{Fristående formel||<math>|\,2\sqrt{3}+2i\,|=\sqrt{(2\sqrt{3}\,)^2+2^2}=\sqrt{16}=4\,\mbox{.}</math>}} | {{Fristående formel||<math>|\,2\sqrt{3}+2i\,|=\sqrt{(2\sqrt{3}\,)^2+2^2}=\sqrt{16}=4\,\mbox{.}</math>}} | ||
- | + | If we call the argument <math>\alpha</math> then it satisfies the relationship | |
{{Fristående formel||<math>\tan\alpha=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}}</math>}} | {{Fristående formel||<math>\tan\alpha=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}}</math>}} | ||
- | + | and since the number is in the first quadrant (positive real and imaginary parts) one gets <math>\alpha=\pi/6</math> and we have that | |
{{Fristående formel||<math>2\sqrt{3}+2i=4\bigl(\cos\frac{\pi}{6}+i\,\sin\frac{\pi}{6}\bigr)\,\mbox{.}</math>}} | {{Fristående formel||<math>2\sqrt{3}+2i=4\bigl(\cos\frac{\pi}{6}+i\,\sin\frac{\pi}{6}\bigr)\,\mbox{.}</math>}} | ||
</li> | </li> | ||
Zeile 269: | Zeile 286: | ||
- | == | + | == Multiplication and division of polar forms == |
- | + | The big advantage of having the complex numbers written in polar form is that multiplication and division then becomes very easy to perform. For arbitrary complex numbers <math>z=|\,z\,|\,(\cos\alpha+i\sin\alpha)</math> and <math>w=|\,w\,|\,(\cos\beta+i\sin\beta)</math>, it can be shown using the trigonometric formulas for addition that | |
<div class="regel"> | <div class="regel"> | ||
Zeile 277: | Zeile 294: | ||
</div> | </div> | ||
- | + | When multiplying complex numbers, the absolute values ''are multiplied'', while the arguments ''are added''. For division of complex numbers, absolute values ''are divided'' and the arguments ''subtracted''. This can be summarised as: | |
<div class="regel"> | <div class="regel"> | ||
- | {{Fristående formel||<math>|\,z\cdot w\,|=|\,z\,|\cdot |\,w\,|\quad \mbox{ | + | {{Fristående formel||<math>|\,z\cdot w\,|=|\,z\,|\cdot |\,w\,|\quad \mbox{and}\quad \arg(z\cdot w)=\arg\,z + \arg\,w\,\mbox{,}</math>}} |
- | {{Fristående formel||<math>\Bigl|\,\frac{z}{w}\,\Bigr|=\frac{|\,z\,|}{|\,w\,|}\quad\quad\quad\; \mbox{ | + | {{Fristående formel||<math>\Bigl|\,\frac{z}{w}\,\Bigr|=\frac{|\,z\,|}{|\,w\,|}\quad\quad\quad\; \mbox{ and}\quad \arg\Bigl(\frac{z}{w}\Bigr)=\arg \,z - \arg\,w\,\mbox{.}</math>}} |
</div> | </div> | ||
- | + | In the complex plane this means that multiplication of <math>z</math> with <math>w</math> causes <math>z</math> to be stretched by a factor <math>|\,w\,|</math> and rotated counterclockwise by an angle <math>\arg\,w</math>. | |
- | + | ||
+ | {| width="80%" align="center" | ||
+ | ||{{:3.2 - Figur - Komplexa tal z och w med argument α och β}} | ||
+ | | width="5%" | | ||
+ | ||{{:3.2 - Figur - Komplexa produkten zw med argument α + β}} | ||
+ | |} | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
- | + | Simplify the following expressions by writing them in polar form: | |
<ol type="a"> | <ol type="a"> | ||
<li><math>\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ | <li><math>\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ | ||
Zeile 299: | Zeile 321: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | We write the numerator and denominator in polar form | |
- | {{Fristående formel||<math>\begin{align*} | + | {{Fristående formel||<math>\begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*}</math>}} |
- | + | and it follows that | |
- | {{Fristående formel||<math>\begin{align*}&\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl(-\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr) = \smash{\frac{\cos\ | + | {{Fristående formel||<math>\begin{align*}&\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl(-\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr) = \smash{\frac{\cos\dfrac{7\pi}{4}+i\,\sin\dfrac{7\pi}{4}\vphantom{\Biggl(}}{\cos\dfrac{3\pi}{4}+i\,\sin\dfrac{3\pi}{4}\vphantom{\Biggl)}}}\\[16pt] &\qquad\quad{}= \cos\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigl)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigr)= \cos\pi+i\,\sin\pi=-1\,\mbox{.}\end{align*}</math>}} |
</li> | </li> | ||
<br/> | <br/> | ||
Zeile 308: | Zeile 330: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | The factors in the expression are written in polar form | |
- | {{Fristående formel||<math>\begin{align*} | + | {{Fristående formel||<math>\begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{,}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{.}\end{align*}</math>}} |
- | + | Multiplication in polar form, gives | |
{{Fristående formel||<math>\begin{align*}(-2-2i)(1+i)&=\sqrt8 \cdot \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*}(-2-2i)(1+i)&=\sqrt8 \cdot \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}</math>}} | ||
</li> | </li> | ||
Zeile 317: | Zeile 339: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Simplify <math>iz</math> and <math>\frac{z}{i}</math> if <math>\ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\Bigr)</math>. Answer in polar form. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | Since <math>\ i=1\cdot \left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\ </math> så är | |
{{Fristående formel||<math>\begin{align*} iz &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\Bigr)\,\mbox{,}\\[4pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)\,\Bigr) = 2\Bigl(\cos\frac{-\pi}{3}+i\,\sin\frac{-\pi}{3}\Bigr)\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} iz &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\Bigr)\,\mbox{,}\\[4pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)\,\Bigr) = 2\Bigl(\cos\frac{-\pi}{3}+i\,\sin\frac{-\pi}{3}\Bigr)\,\mbox{.}\end{align*}</math>}} | ||
</li> | </li> | ||
<br/> | <br/> | ||
- | <li> | + | <li> Simplify <math>iz</math> and <math>\frac{z}{i}</math> if <math>\ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)\,</math>. Answer in polar form. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | + | Rewriting <math>i</math> in polar form gives | |
{{Fristående formel||<math>\begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}</math>}} | {{Fristående formel||<math>\begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}</math>}} | ||
</li> | </li> | ||
</ol> | </ol> | ||
- | + | We see that multiplying by ''i'' leads to a counter-clockwise rotation <math>\pi/2</math>, while division with ''i'' results in a clockwise rotation <math>\pi/2</math>. | |
{| width="80%" align="center" | {| width="80%" align="center" | ||
Zeile 343: | Zeile 365: | ||
||{{:3.2 - Figur - Komplexa talplanet med z, iz och z/i är markerade, där arg z = 7π/4}} | ||{{:3.2 - Figur - Komplexa talplanet med z, iz och z/i är markerade, där arg z = 7π/4}} | ||
|- | |- | ||
- | ||<small> | + | ||<small>Complex numbers ''z'', ''iz'' and ''z''/''i'' when |''z''| = 2 and arg ''z'' = π/6.</small> |
|| | || | ||
- | ||<small> | + | ||<small>Complex numbers ''z'', ''iz'' and ''z''/''i'' when |''z''| = 3 and arg ''z'' = 7π/4.</small> |
|} | |} | ||
</div> | </div> |
Aktuelle Version
Theory | Exercises |
Content:
- The complex plane
- Addition and subtraction in the complex plane
- Modulus and argument
- Polar form
- Multiplication and division in polar form
- Multiplication with i in the complex plane
Learning outcomes:
After this section, you will have learnt:
- A geometric understanding of complex numbers and their arithmetic operations in the plane.
- To be able to convert the complex number between the form a + ib and polar form.
The complex plane
As a complex number \displaystyle z=a+bi consists of a real part and \displaystyle a and an imaginary part \displaystyle b, one can consider \displaystyle z to be an ordered pair of numbers \displaystyle (a,b) and interpreted as a point in a coordinate system. We thus construct a coordinate system by drawing an imaginary axis ( a number axis having a unit \displaystyle i) perpendicular to a real axis (the real-number axis). We can now designate each complex number as a point in this coordinate system, and conversely each point defines a unique complex number.
This geometric interpretation of the complex numbers is called the complex plane.
Note: The real numbers, that is all complex numbers with imaginary part 0, lie along the real axis. One can therefore regards the extension of the number system from \displaystyle \mathbb{R} (the real numbers) to \displaystyle \mathbb{C} (the complex numbers) to mean that one adjoins an extra dimension to the completely filled real-number axis .
Addition of complex numbers has a quite natural and simple interpretation in the complex plane and is geometrically the same method as vector addition. Subtraktion can be seen as the addition of the corresponding negative numbers, that is \displaystyle z-w=z+(-w).
|
| |||
Geometrically the number z + w is obtained by considering a hypothetical line segment from 0 to w which is parallel-displaced so that its initial point at 0 is moved to z. Then this line segments terminal point w lands at the point z + w. | The subtraction z - w can be written as z + (-w) and can therefore be interpreted geometrically as a hypothetical line segment from 0 to -w is parallel-displaced so that its initial point at 0 is moved to z. Then this line segments terminal point -w lands at the point z - w. |
Example 1
Given \displaystyle z=2+i and \displaystyle w=-3-i. Indicate \displaystyle z, \displaystyle w, \displaystyle \overline{z}, \displaystyle \overline{z}-\overline{w} and \displaystyle z-w in the complex plane.
We have that
|
|
Note that complex conjugated numbers are mirror images in the real axis.
Example 2
Indicate in the complex plane all numbers \displaystyle z which meet the following conditions:
- \displaystyle \mathop{\rm Re} z \ge 3\,,
- \displaystyle -1 < \mathop{\rm Im} z \le 2\,.
The first inequality defines the region in the figure on the left below, and the second inequality defines the region in the figure on the right below.
|
| |
All the numbers that satisfy Re z ≥ 3 have a real part that is greater than or equal to 3. These figures form the shaded semi-plane in the figure. | Numbers that satisfy -1 < Im z ≤ 2 have an imaginary part that is between -1 and 2. These numbers are therefore in the ribbon-like region marked in the figure. The lower horizontal line is dotted and that means that points on that line do not belong to the coloured region. |
Absolute value
The real numbers can be arranged in order of magnitude, that is. we can determine whether a real number is greater than another, the further to the right on the real number line the greater the number.
For the complex numbers this is not possibile. We cannot decide which is the larger of e.g. \displaystyle z=1-i and \displaystyle w=-1+i . With the help of the concept of absolute value however, we can define a measure of the size of a complex number.
For a complex number \displaystyle z=a+ib the absolute value \displaystyle |\,z\,| is defined as
\displaystyle |\,z\,|=\sqrt{a^2+b^2}\,\mbox{.} |
We see that \displaystyle |\,z\,| is a real number, and that \displaystyle |\,z\,|\ge 0. For a real number \displaystyle b = 0 and then \displaystyle |\,z\,|=\sqrt{a^2}=|\,a\,|, which is consistent with the usual definition of an absolute value of a real number. Geometrically the absolute value is the distance from the number \displaystyle z=a+ib (the point \displaystyle (a, b)) to \displaystyle z = 0 (origin), according to Pythagoras theorem.
Distance between complex numbers
With the help of the formula for the distance between points in a coordinate system one can obtain an important and useful interpretation of the absolute value. The distance \displaystyle s between the two complex numbers \displaystyle z=a+ib and \displaystyle w=c+id (see fig.) can with the help of the Formula for distance be written as
\displaystyle s=\sqrt{(a-c)^2+(b-d)^2}\,\mbox{.} |
Since \displaystyle z-w=(a-c)+i(b-d), one gets
Example 3
Indicate the following sets in the complex plane:
|
|
|
|
|
|
|
|
Example 4
Indicate in the complex plane all numbers \displaystyle z satisfying the following
- \displaystyle \, \left\{ \eqalign{&|\,z-2i\,|\le 3\cr &1\le\mathop{\rm Re} z\le 2}\right.
The first inequality gives the points on and inside a circle with radius 3 and center at \displaystyle 2i. The second inequality is a vertical strip of points with their real part between 1 and 2. The area satisfying both inequalities is given by the points which lie both within the circle and within the strip. - \displaystyle \, |\,z+1\,|=|\,z-2\,|
The equation can be written as \displaystyle |\,z-(-1)\,|=|\,z-2\,|. This shows then that \displaystyle z should be at an equal distance from \displaystyle -1 and \displaystyle 2. This condition is met by all the numbers \displaystyle z that have a real part \displaystyle 1/2.
|
| |
The shaded region consists of the points that satisfy the inequalities |z - 2i| ≤ 3 and 1 ≤ Re z ≤ 2. | The points that satisfy the equation |z + 1| = |z - 2| lie on the line with real part equal to 1/2. |
Polar form
Instead of representing a complex number \displaystyle z=x+iy by its rectangular coordinates \displaystyle (x,y) one can use polar coordinates. This means that one represents a numbers location in the complex plane by its distance \displaystyle r to the origin, and the angle \displaystyle \alpha, made by the positive real-line axis and the line from the origin to the number (see the figure).
Since \displaystyle \,\cos\alpha = x/r\, and \displaystyle \,\sin\alpha = y/r\, then \displaystyle \,x = r\cos\alpha\, and \displaystyle \,y= r\sin\alpha. The number \displaystyle z=x+iy can be written as
\displaystyle z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{,} |
which is called the polar form of a complex number \displaystyle z. The angle \displaystyle \alpha is called the argument of \displaystyle z and is written
\displaystyle \alpha=\arg\,z\,\mbox{.} |
The angle \displaystyle \alpha, for example, can be determined by solving the equation \displaystyle \tan\alpha=y/x. This equation, however, has a number of solutions, so we must ensure that we choose the solution \displaystyle \alpha that allows \displaystyle z= r(\cos\alpha + i\sin\alpha) to end up in the correct quadrant.
The argument for a complex number is not uniquely determined because angles that differ by \displaystyle 2\pi indicate the same direction in the complex plane. Normally, one uses for the argument the angle between 0 and \displaystyle 2\pi or between \displaystyle -\pi and \displaystyle \pi.
The real number \displaystyle r, the distance to the origin as we have already seen, is the absolute value of \displaystyle z,
\displaystyle r=\sqrt{x^2+y^2}=|\,z\,|\,\mbox{.} |
Example 5
Write the following complex numbers in polar form:
- \displaystyle \,\,-3
We have that\displaystyle |\,-3\,|=3 and \displaystyle \arg (-3)=\pi, which means that \displaystyle \ -3=3(\cos\pi+i\,\sin\pi). - \displaystyle \,i
We have that \displaystyle |\,i\,|=1 and \displaystyle \arg i = \pi/2 which in polar form is \displaystyle \ i=\cos(\pi/2)+i\,\sin(\pi/2)\,. - \displaystyle \,1-i
The formula for a the absolut value of a complex number gives \displaystyle |\,1-i\,|=\sqrt{1^2+(-1)^2}=\sqrt{2}. The complex number lies in the fourth quadrant and has an angl \displaystyle \pi/4 with the positive real axis, which gives \displaystyle \arg (1-i)=2\pi-\pi/4=7\pi/4. Thus \displaystyle \ 1-i=\sqrt{2}\,\bigl(\cos(7\pi/4)+i\sin(7\pi/4)\,\bigr). - \displaystyle \,2\sqrt{3}+2i
The absolute value is the easiest to calculate\displaystyle |\,2\sqrt{3}+2i\,|=\sqrt{(2\sqrt{3}\,)^2+2^2}=\sqrt{16}=4\,\mbox{.} If we call the argument \displaystyle \alpha then it satisfies the relationship
\displaystyle \tan\alpha=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}} and since the number is in the first quadrant (positive real and imaginary parts) one gets \displaystyle \alpha=\pi/6 and we have that
\displaystyle 2\sqrt{3}+2i=4\bigl(\cos\frac{\pi}{6}+i\,\sin\frac{\pi}{6}\bigr)\,\mbox{.}
Multiplication and division of polar forms
The big advantage of having the complex numbers written in polar form is that multiplication and division then becomes very easy to perform. For arbitrary complex numbers \displaystyle z=|\,z\,|\,(\cos\alpha+i\sin\alpha) and \displaystyle w=|\,w\,|\,(\cos\beta+i\sin\beta), it can be shown using the trigonometric formulas for addition that
\displaystyle \begin{align*}z\cdot w&=|\,z\,|\,|\,w\,|\,\bigl(\cos(\alpha+\beta)+i\,\sin(\alpha+\beta)\bigr)\,\mbox{,}\\[4pt] \frac{z}{w}&=\frac{|z|}{|w|}\bigl(\cos(\alpha-\beta)+i\,\sin(\alpha-\beta)\bigr)\,\mbox{.}\end{align*} |
When multiplying complex numbers, the absolute values are multiplied, while the arguments are added. For division of complex numbers, absolute values are divided and the arguments subtracted. This can be summarised as:
\displaystyle |\,z\cdot w\,|=|\,z\,|\cdot |\,w\,|\quad \mbox{and}\quad \arg(z\cdot w)=\arg\,z + \arg\,w\,\mbox{,} |
\displaystyle \Bigl|\,\frac{z}{w}\,\Bigr|=\frac{|\,z\,|}{|\,w\,|}\quad\quad\quad\; \mbox{ and}\quad \arg\Bigl(\frac{z}{w}\Bigr)=\arg \,z - \arg\,w\,\mbox{.} |
In the complex plane this means that multiplication of \displaystyle z with \displaystyle w causes \displaystyle z to be stretched by a factor \displaystyle |\,w\,| and rotated counterclockwise by an angle \displaystyle \arg\,w.
|
|
Example 6
Simplify the following expressions by writing them in polar form:
- \displaystyle \Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/
\Bigl( -\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr)
We write the numerator and denominator in polar form\displaystyle \begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*} and it follows that
\displaystyle \begin{align*}&\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl(-\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr) = \smash{\frac{\cos\dfrac{7\pi}{4}+i\,\sin\dfrac{7\pi}{4}\vphantom{\Biggl(}}{\cos\dfrac{3\pi}{4}+i\,\sin\dfrac{3\pi}{4}\vphantom{\Biggl)}}}\\[16pt] &\qquad\quad{}= \cos\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigl)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigr)= \cos\pi+i\,\sin\pi=-1\,\mbox{.}\end{align*} - \displaystyle (-2-2i)(1+i)
The factors in the expression are written in polar form\displaystyle \begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{,}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{.}\end{align*} Multiplication in polar form, gives
\displaystyle \begin{align*}(-2-2i)(1+i)&=\sqrt8 \cdot \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}
Example 7
- Simplify \displaystyle iz and \displaystyle \frac{z}{i} if \displaystyle \ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\Bigr). Answer in polar form.
Since \displaystyle \ i=1\cdot \left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\ så är\displaystyle \begin{align*} iz &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\Bigr)\,\mbox{,}\\[4pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)\,\Bigr) = 2\Bigl(\cos\frac{-\pi}{3}+i\,\sin\frac{-\pi}{3}\Bigr)\,\mbox{.}\end{align*} - Simplify \displaystyle iz and \displaystyle \frac{z}{i} if \displaystyle \ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)\,. Answer in polar form.
Rewriting \displaystyle i in polar form gives\displaystyle \begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}
We see that multiplying by i leads to a counter-clockwise rotation \displaystyle \pi/2, while division with i results in a clockwise rotation \displaystyle \pi/2.
|
| |
Complex numbers z, iz and z/i when |z| = 2 and arg z = π/6. | Complex numbers z, iz and z/i when |z| = 3 and arg z = 7π/4. |