3.3 Övningar

Aus Förberedande kurs i matematik 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: __NOTOC__ {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | style="border-bottom:1px solid #000" width="5px" |   {{Mall:Ej vald flik|[[3.3 Potenser och rötter|T...)
Aktuelle Version (12:34, 4. Aug. 2008) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[3.3 Potenser och rötter|Teori]]}}
+
{{Ej vald flik|[[3.3 Potenser och rötter|Theory]]}}
-
{{Mall:Vald flik|[[3.3 Övningar|Övningar]]}}
+
{{Vald flik|[[3.3 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 3.3:1===
+
===Exercise 3.3:1===
<div class="ovning">
<div class="ovning">
-
Skriv följande tal i formen <math>\,a+ib\,</math>, där <math>\,a\,</math> och <math>\,b\,</math> är reella tal.
+
Write the following number in the form <math>\,a+ib\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 25: Zeile 25:
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 3.3:1|Lösning a|Lösning 3.3:1a|Lösning b|Lösning 3.3:1b|Lösning c|Lösning 3.3:1c|Lösning d|Lösning 3.3:1d|Lösning e|Lösning 3.3:1e}}
</div>{{#NAVCONTENT:Svar|Svar 3.3:1|Lösning a|Lösning 3.3:1a|Lösning b|Lösning 3.3:1b|Lösning c|Lösning 3.3:1c|Lösning d|Lösning 3.3:1d|Lösning e|Lösning 3.3:1e}}
 +
 +
===Exercise 3.3:2===
 +
<div class="ovning">
 +
Solve the equations
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%"|<math>z^4=1</math>
 +
|b)
 +
|width="33%"| <math>z^3=-1</math>
 +
|c)
 +
|width="33%"| <math> z^5=-1-i</math>
 +
|-
 +
|d)
 +
|width="33%"| <math>(z-1)^4+4=0</math>
 +
|e)
 +
|width="33%"| <math>\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1</math>
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 3.3:2|Lösning a|Lösning 3.3:2a|Lösning b|Lösning 3.3:2b|Lösning c|Lösning 3.3:2c|Lösning d|Lösning 3.3:2d|Lösning e|Lösning 3.3:2e}}
 +
 +
===Exercise 3.3:3===
 +
<div class="ovning">
 +
Complete the square of the following expressions
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%"|<math>z^2 +2z+3</math>
 +
|b)
 +
|width="50%"| <math>z^2 +3iz-\frac{1}{4}</math>
 +
|-
 +
|c)
 +
|width="50%"| <math>-z^2-2iz +4z+1</math>
 +
|d)
 +
|width="50%"| <math>iz^2+(2+3i)z-1</math>
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 3.3:3|Lösning a|Lösning 3.3:3a|Lösning b|Lösning 3.3:3b|Lösning c|Lösning 3.3:3c|Lösning d|Lösning 3.3:3d}}
 +
 +
===Exercise 3.3:4===
 +
<div class="ovning">
 +
Solve the equations
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%"|<math>z^2=i</math>
 +
|b)
 +
|width="50%"| <math>z^2-4z+5=0</math>
 +
|-
 +
|c)
 +
|width="50%"| <math>-z^2+2z+3=0</math>
 +
|d)
 +
|width="50%"| <math>\displaystyle\frac{1}{z} + z = \frac{1}{2}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 3.3:4|Lösning a|Lösning 3.3:4a|Lösning b|Lösning 3.3:4b|Lösning c|Lösning 3.3:4c|Lösning d|Lösning 3.3:4d}}
 +
 +
===Exercise 3.3:5===
 +
<div class="ovning">
 +
Solve the equations
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="50%"|<math>z^2-2(1+i)z+2i-1=0</math>
 +
|b)
 +
|width="50%"| <math>z^2-(2-i)z+(3-i)=0</math>
 +
|-
 +
|c)
 +
|width="50%"| <math>z^2-(1+3i)z-4+3i=0</math>
 +
|d)
 +
|width="50%"| <math>(4+i)z^2+(1-21i)z=17</math>
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 3.3:5|Lösning a|Lösning 3.3:5a|Lösning b|Lösning 3.3:5b|Lösning c|Lösning 3.3:5c|Lösning d|Lösning 3.3:5d}}
 +
 +
===Exercise 3.3:6===
 +
<div class="ovning">
 +
Determine the solution to <math>\,z^2=1+i\,</math> both in polar form and in the form <math>\,a+ib\,</math>, where <math>\,a\,</math> and <math>\,b\,</math> are real numbers. Use the result to calculate <math>\; \tan \frac{\pi}{8}\,</math>.
 +
</div>{{#NAVCONTENT:Svar|Svar 3.3:6|Lösning |Lösning 3.3:6}}

Aktuelle Version

       Theory          Exercises      

Exercise 3.3:1

Write the following number in the form \displaystyle \,a+ib\,, where \displaystyle \,a\, and \displaystyle \,b\, are real numbers:

a) \displaystyle (i+1)^{12} b) \displaystyle \displaystyle\Bigl(\frac{1+i\sqrt{3}}{2}\,\Bigr)^{12}
c) \displaystyle (4\sqrt{3} -4i)^{22} d) \displaystyle \Bigl(\displaystyle\frac{1+i\sqrt{3}}{1+i}\,\Bigr)^{12}
e) \displaystyle \displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}

Exercise 3.3:2

Solve the equations

a) \displaystyle z^4=1 b) \displaystyle z^3=-1 c) \displaystyle z^5=-1-i
d) \displaystyle (z-1)^4+4=0 e) \displaystyle \displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1

Exercise 3.3:3

Complete the square of the following expressions

a) \displaystyle z^2 +2z+3 b) \displaystyle z^2 +3iz-\frac{1}{4}
c) \displaystyle -z^2-2iz +4z+1 d) \displaystyle iz^2+(2+3i)z-1

Exercise 3.3:4

Solve the equations

a) \displaystyle z^2=i b) \displaystyle z^2-4z+5=0
c) \displaystyle -z^2+2z+3=0 d) \displaystyle \displaystyle\frac{1}{z} + z = \frac{1}{2}

Exercise 3.3:5

Solve the equations

a) \displaystyle z^2-2(1+i)z+2i-1=0 b) \displaystyle z^2-(2-i)z+(3-i)=0
c) \displaystyle z^2-(1+3i)z-4+3i=0 d) \displaystyle (4+i)z^2+(1-21i)z=17

Exercise 3.3:6

Determine the solution to \displaystyle \,z^2=1+i\, both in polar form and in the form \displaystyle \,a+ib\,, where \displaystyle \,a\, and \displaystyle \,b\, are real numbers. Use the result to calculate \displaystyle \; \tan \frac{\pi}{8}\,.