Solution 1.2:3d

From Förberedande kurs i matematik 2

Revision as of 13:04, 15 October 2008 by Tek (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search

We differentiate the function successively, one part at a time,

\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\cos\sin x} = \cos \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\cos\sin x}\bigr)'\,,

and the next differentiation becomes

\displaystyle \begin{align}

\frac{d}{dx}\,\cos \bbox[#FFEEAA;,1.5pt]{\sin x} &= -\sin \bbox[#FFEEAA;,1.5pt]{\sin x}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\sin x}\bigr)'\\[5pt] &= -\sin \sin x\cdot \cos x\,\textrm{.} \end{align}

The answer is thus

\displaystyle \begin{align}

\frac{d}{dx}\,\sin \cos \sin x &= \cos \cos \sin x\cdot ( -\sin \sin x\cdot \cos x)\\[5pt] &= -\cos \cos \sin x\cdot \sin \sin x\cdot \cos x\,\textrm{.} \end{align}