Solution 1.2:4a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (13:47, 15 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives
We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}
 +
&= {}\rlap{\frac{(x)'\sqrt{1-x^2}-x\bigl(\sqrt{1-x^2}\bigr)'}{\bigl(\sqrt{1-x^2}\bigr)^2}}\phantom{\frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}}\\[5pt]
 +
&= \frac{1\cdot\sqrt{1-x^2}-x\bigl(\sqrt{1-x^2}\bigr)'}{1-x^2}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
We determine the derivative <math>\bigl(\sqrt{1-x^2}\bigr)'</math> by using the chain rule
-
& \frac{d}{dx}\frac{x}{\sqrt{1-x^{2}}}=\frac{\left( x \right)^{\prime }\sqrt{1-x^{2}}-x\left( \sqrt{1-x^{2}} \right)^{\prime }}{\left( \sqrt{1-x^{2}} \right)^{2}} \\
+
-
& \\
+
-
& =\frac{1\centerdot \sqrt{1-x^{2}}-x\left( \sqrt{1-x^{2}} \right)^{\prime }}{1-x^{2}} \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}}{}
 +
&= \frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}\\[5pt]
 +
&= \frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot (-2x)}{1-x^2}\,\textrm{.}
 +
\end{align}</math>}}
-
We determine the derivative
+
We simplify the result as far as possible, so as to make the second differentiation easier,
-
<math>\left( \sqrt{1-x^{2}} \right)^{\prime }</math>
+
-
by using the chain rule
+
 +
{{Displayed math||<math>\begin{align}
 +
\phantom{\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}}{}
 +
&= {}\rlap{\frac{\sqrt{1-x^2} + \dfrac{x^2}{\sqrt{1-x^2}}}{1-x^2}}\phantom{\frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}}\\[5pt]
 +
&= \frac{\dfrac{\bigl(\sqrt{1-x^2}\bigr)^2}{\sqrt{1-x^2}}+\dfrac{x^2}{\sqrt{1-x^2}}}{1-x^2}\\[5pt]
 +
&= \frac{\dfrac{1-x^2+x^2}{\sqrt{1-x^2}}}{1-x^2}\\[5pt]
 +
&= \frac{1}{(1-x^2)^{3/2}}\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
The second derivative is
-
& =\frac{\sqrt{1-x^{2}}-x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( 1-x^{2} \right)^{\prime }}{1-x^{2}} \\
+
-
& \\
+
-
& =\frac{\sqrt{1-x^{2}}-x\centerdot \frac{1}{2\sqrt{1-x^{2}}}\centerdot \left( -2x \right)}{1-x^{2}} \\
+
-
\end{align}</math>
+
-
 
+
{{Displayed math||<math>\begin{align}
-
We simplify the result as far as possible, so as to make the second differentiation easier:
+
\frac{d^2}{dx^2}\,\frac{x}{\sqrt{1-x^2}}
-
 
+
&= \frac{d}{dx}\,\frac{1}{(1-x^2)^{3/2}}\\[5pt]
-
 
+
&= \frac{d}{dx}\,\bigl(1-x^2\bigr)^{-3/2}\\[5pt]
-
<math>\begin{align}
+
&= -\tfrac{3}{2}\bigl(1-x^2\bigr)^{-3/2-1}\cdot\bigl(1-x^2\bigr)'\\[5pt]
-
& =\frac{\sqrt{1-x^{2}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
+
&= -\tfrac{3}{2}\bigl(1-x^2\bigr)^{-5/2}\cdot (-2x)\\[5pt]
-
& \\
+
&= 3x\bigl(1-x^2\bigr)^{-5/2}\\[5pt]
-
& =\frac{\frac{\left( \sqrt{1-x^{2}} \right)^{2}}{\sqrt{1-x^{2}}}+\frac{x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
+
&= \frac{3x}{\bigl(1-x^2\bigr)^{5/2}}\,\textrm{.}
-
& \\
+
\end{align}</math>}}
-
& =\frac{\frac{1-x^{2}+x^{2}}{\sqrt{1-x^{2}}}}{1-x^{2}} \\
+
-
& \\
+
-
& =\frac{1}{\left( 1-x^{2} \right)^{{3}/{2}\;}} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
The second derivative is:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \frac{d^{^{2}}}{dx^{^{2}}}\frac{x}{\sqrt{1-x^{2}}}=\frac{d}{dx}\frac{1}{\left( 1-x^{2} \right)^{{3}/{2}\;}} \\
+
-
& \\
+
-
& =\frac{d}{dx}\left( 1-x^{2} \right)^{-{3}/{2}\;}=-\frac{3}{2}\left( 1-x^{2} \right)^{-\frac{3}{2}-1}\centerdot \left( 1-x^{2} \right)^{\prime } \\
+
-
& \\
+
-
& =-\frac{3}{2}\left( 1-x^{2} \right)^{{-5}/{2}\;}\centerdot \left( -2x \right)=3x\left( 1-x^{2} \right)^{{-5}/{2}\;} \\
+
-
& \\
+
-
& =\frac{3x}{\left( 1-x^{2} \right)^{{5}/{2}\;}} \\
+
-
\end{align}</math>
+

Current revision

We are to differentiate the expression two times, so we start by differentiating once. The quotient rule gives

\displaystyle \begin{align}

\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}} &= {}\rlap{\frac{(x)'\sqrt{1-x^2}-x\bigl(\sqrt{1-x^2}\bigr)'}{\bigl(\sqrt{1-x^2}\bigr)^2}}\phantom{\frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}}\\[5pt] &= \frac{1\cdot\sqrt{1-x^2}-x\bigl(\sqrt{1-x^2}\bigr)'}{1-x^2}\,\textrm{.} \end{align}

We determine the derivative \displaystyle \bigl(\sqrt{1-x^2}\bigr)' by using the chain rule

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}}{} &= \frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}\\[5pt] &= \frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot (-2x)}{1-x^2}\,\textrm{.} \end{align}

We simplify the result as far as possible, so as to make the second differentiation easier,

\displaystyle \begin{align}

\phantom{\frac{d}{dx}\,\frac{x}{\sqrt{1-x^2}}}{} &= {}\rlap{\frac{\sqrt{1-x^2} + \dfrac{x^2}{\sqrt{1-x^2}}}{1-x^2}}\phantom{\frac{\sqrt{1-x^2}-x\cdot\dfrac{1}{2\sqrt{1-x^2}}\cdot\bigl(1-x^2\bigr)'}{1-x^2}}\\[5pt] &= \frac{\dfrac{\bigl(\sqrt{1-x^2}\bigr)^2}{\sqrt{1-x^2}}+\dfrac{x^2}{\sqrt{1-x^2}}}{1-x^2}\\[5pt] &= \frac{\dfrac{1-x^2+x^2}{\sqrt{1-x^2}}}{1-x^2}\\[5pt] &= \frac{1}{(1-x^2)^{3/2}}\,\textrm{.} \end{align}

The second derivative is

\displaystyle \begin{align}

\frac{d^2}{dx^2}\,\frac{x}{\sqrt{1-x^2}} &= \frac{d}{dx}\,\frac{1}{(1-x^2)^{3/2}}\\[5pt] &= \frac{d}{dx}\,\bigl(1-x^2\bigr)^{-3/2}\\[5pt] &= -\tfrac{3}{2}\bigl(1-x^2\bigr)^{-3/2-1}\cdot\bigl(1-x^2\bigr)'\\[5pt] &= -\tfrac{3}{2}\bigl(1-x^2\bigr)^{-5/2}\cdot (-2x)\\[5pt] &= 3x\bigl(1-x^2\bigr)^{-5/2}\\[5pt] &= \frac{3x}{\bigl(1-x^2\bigr)^{5/2}}\,\textrm{.} \end{align}