Solution 1.1:2f

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (12:47, 14 October 2008) (edit) (undo)
m
 
Line 1: Line 1:
-
We can rewrite the function using a trigonometric addition formula:
+
We can rewrite the function using a trigonometric addition formula,
 +
{{Displayed math||<math>f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}</math>}}
-
<math>f\left( x \right)=\cos \left( x+\frac{\pi }{3} \right)=\cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3}</math>
+
If we now differentiate this expression, <math>\cos (\pi/3)</math> and <math>\sin (\pi/3)</math> are constants and we obtain
-
 
+
-
 
+
-
If we now differentiate this expression,
+
-
<math>\cos \frac{\pi }{3}</math>
+
-
and
+
-
<math>\sin \frac{\pi }{3}</math>
+
-
are constants and we obtain
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& {f}'\left( x \right)=\frac{d}{dx}\left( \cos x\centerdot \cos \frac{\pi }{3}-\sin x\centerdot \sin \frac{\pi }{3} \right) \\
+
-
& =\cos \frac{\pi }{3}\centerdot \frac{d}{dx}\cos x-\sin \frac{\pi }{3}\centerdot \frac{d}{dx}\sin x \\
+
-
& =\cos \frac{\pi }{3}\centerdot \left( -\sin x \right)-\sin \frac{\pi }{3}\centerdot \cos x \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
f^{\,\prime}(x)
 +
&= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt]
 +
&= \cos\frac{\pi}{3}\cdot\frac{d}{dx}\,\cos x - \sin\frac{\pi}{3}\cdot\frac{d}{dx}\,\sin x\\[5pt]
 +
&= \cos\frac{\pi}{3}\cdot (-\sin x) - \sin\frac{\pi}{3}\cdot\cos x\,\textrm{.}
 +
\end{align}</math>}}
If we then use the addition formula in reverse, this gives
If we then use the addition formula in reverse, this gives
 +
{{Displayed math||<math>\begin{align}
 +
f^{\,\prime}(x)
 +
&= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt]
 +
&= -\sin\Bigl(x+\frac{\pi}{3}\Bigr)\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
 
-
& {f}'\left( x \right)=-\left( \sin x\centerdot \cos \frac{\pi }{3}+\cos x\centerdot \sin \frac{\pi }{3} \right) \\
 
-
& =-\sin \left( x+\frac{\pi }{3} \right) \\
 
-
\end{align}</math>
 
-
NOTE: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.
+
Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.

Current revision

We can rewrite the function using a trigonometric addition formula,

\displaystyle f(x) = \cos\Bigl(x+\frac{\pi}{3}\Bigr) = \cos x\cdot\cos \frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3}\,\textrm{.}

If we now differentiate this expression, \displaystyle \cos (\pi/3) and \displaystyle \sin (\pi/3) are constants and we obtain

\displaystyle \begin{align}

f^{\,\prime}(x) &= \frac{d}{dx}\,\Bigl(\cos x\cdot\cos\frac{\pi}{3} - \sin x\cdot\sin\frac{\pi}{3} \Bigr)\\[5pt] &= \cos\frac{\pi}{3}\cdot\frac{d}{dx}\,\cos x - \sin\frac{\pi}{3}\cdot\frac{d}{dx}\,\sin x\\[5pt] &= \cos\frac{\pi}{3}\cdot (-\sin x) - \sin\frac{\pi}{3}\cdot\cos x\,\textrm{.} \end{align}

If we then use the addition formula in reverse, this gives

\displaystyle \begin{align}

f^{\,\prime}(x) &= -\Bigl(\sin x\cdot\cos\frac{\pi}{3} + \cos x\cdot\sin\frac{\pi}{3}\Bigr)\\[5pt] &= -\sin\Bigl(x+\frac{\pi}{3}\Bigr)\,\textrm{.} \end{align}


Note: In the next section, we will go through differentiation rules which make it possible to differentiate the expression directly without rewriting in this way.