Solution 3.2:2b

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
<math>\begin{align}
<math>\begin{align}
0 &\leq \mathrm{Re}z \leq 1,\\
0 &\leq \mathrm{Re}z \leq 1,\\
-
0 &\leq \mathrm{Im}z \leq 1,\end{align}
+
0 &\leq \mathrm{Im}z \leq 1,\end{align}</math>
-
\mathrm{Re}z \leq \mathrm{Im}z.
+
<math>\mathrm{Re}z \leq \mathrm{Im}z
-
</math>
+
</math>.
The first two inequalities in this list define the unit square in the complex number plane.
The first two inequalities in this list define the unit square in the complex number plane.

Revision as of 10:49, 3 October 2008