Solution 1.1:1a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Robot: Automated text replacement (-[[Bild: +[[Image:))
Line 1: Line 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
 +
The derivative f'(-4)gives the function's instantaneous rate of change at the point x=-4, i.e. it is a measure of the function's value changes in the vicinity of x=-4.
 +
 +
In the graph of the function, this derivative is equal to the slope of the tangent to the curve of function at the point x=-4.
 +
 +
[[Image:1_1_1_a1.gif|center]]
 +
 +
Because the tangent is sloping upwards, it has a positive gradient and therefore f'(-4)>0.
 +
 +
At the point x=1, the tangent slopes downwards and this means that f'(1)<0.
 +
 +
[[Image:1_1_1_a2.gif|center]]
 +
 +
<center> [[Image:1_1_1a-1(2).gif]] </center>
<center> [[Image:1_1_1a-1(2).gif]] </center>
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}
Line 5: Line 18:
<center> [[Image:2_1_1a-2(2).gif]] </center>
<center> [[Image:2_1_1a-2(2).gif]] </center>
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}
- 
-
[[Image:1_1_1_a1.gif|center]]
 
- 
-
[[Image:1_1_1_a2.gif|center]]
 

Revision as of 15:24, 5 September 2008