Solution 1.3:6

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
Current revision (10:55, 21 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we call the radius of the metal can ''r'' and its height ''h'', then we can determine the can's volume and area by using the figures below,
-
<center> [[Bild:1_3_6-1(4).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Bild:1_3_6-2(4).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Bild:1_3_6-3(4).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
{{NAVCONTENT_START}}
+
-
<center> [[Bild:1_3_6-4(4).gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
-
[[Bild:1_3_6_1.gif|center]]
+
{{Displayed math||<math>\begin{align}
 +
\text{Volume} &= \text{(area of the base)}\cdot\text{(height)}\\[5pt]
 +
&= \pi r^2\cdot h\,,\\[10pt]
 +
\text{Area} &= \text{(area of the base)} + \text{(area of the cylindrical surface)}\\[5pt]
 +
&= \pi r^2 + 2\pi rh\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
[[Image:1_3_6_1.gif|center]]
 +
 
 +
The problem can then be formulated as: minimise the can's area, <math>A = \pi r^2 + 2\pi h</math>, whilst at the same time keeping the volume, <math>V = \pi r^2h\,</math>, constant.
 +
 
 +
From the formula for the volume, we can make ''h'' the subject,
 +
 
 +
{{Displayed math||<math>h=\frac{V}{\pi r^2}</math>}}
 +
 
 +
and express the area solely in terms of the radius, ''r'',
 +
 
 +
{{Displayed math||<math>A = \pi r^2 + 2\pi r\cdot\frac{V}{\pi r^2} = \pi r^2 + \frac{2V}{r}\,\textrm{.}</math>}}
 +
 
 +
The minimisation problem is then:
 +
 
 +
::Minimise the area <math>A(r) = \pi r^2 + \frac{2V}{r}</math>, when <math>r>0\,</math>.
 +
 
 +
The area function <math>A(r)</math> is differentiable for all <math>r>0</math> and the region of definition <math>r>0</math> has no endpoints (<math>r=0</math> does not satisfy <math>r>0</math>), so the function can only assume extreme values at critical points.
 +
 
 +
The derivative is given by
 +
 
 +
{{Displayed math||<math>A'(r) = 2\pi r - \frac{2V}{r^2}\,,</math>}}
 +
 
 +
and if we set the derivative equal to zero, so as to obtain the critical points, we get
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
& 2\pi r - \frac{2V}{r^2} = 0\quad \Leftrightarrow \quad 2\pi r = \frac{2V}{r^2}\\[5pt]
 +
&\quad\Leftrightarrow \quad r^3=\frac{V}{\pi}\quad \Leftrightarrow \quad r=\sqrt[\scriptstyle 3]{\frac{V}{\pi}}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
For this value of ''r'', the second derivative,
 +
 
 +
{{Displayed math||<math>A''(r) = 2\pi + \frac{4V}{r^3}\,,</math>}}
 +
 
 +
has the value
 +
 
 +
{{Displayed math||<math>A''\bigl(\sqrt[3]{V/\pi}\bigr) = 2\pi + \frac{4V}{V/\pi } = 6\pi > 0\,,</math>}}
 +
 
 +
which shows that <math>r=\sqrt[3]{V/\pi}</math> is a local minimum.
 +
 
 +
Because the region of definition, <math>r>0</math>, is open (the endpoint
 +
<math>r=0\text{ }</math> is not included) and unlimited, we cannot directly say that the area is least when <math>r = \sqrt[3]{V/\pi}\,</math>; it could be the case that area becomes smaller when <math>r\to 0</math> or <math>r\to \infty </math>. In this case, however, the area increases without bound as
 +
<math>r\to 0</math> or <math>r\to \infty </math>, so <math>r=\sqrt[3]{V/\pi}</math>
 +
really is a global minimum.
 +
 
 +
The metal can has the least area for a given volume <math>V</math> when
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
r &= \sqrt[3]{V/\pi}\,,\quad\text{and}\\[5pt]
 +
h &= \frac{V}{\pi r^{2}} = \frac{V}{\pi}\Bigl(\frac{V}{\pi}\Bigr)^{-2/3} = \Bigl( \frac{V}{\pi}\Bigr)^{1-2/3} = \Bigl(\frac{V}{\pi}\Bigr)^{1/3} = \sqrt[3]{\frac{V}{\pi}}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we call the radius of the metal can r and its height h, then we can determine the can's volume and area by using the figures below,

\displaystyle \begin{align}

\text{Volume} &= \text{(area of the base)}\cdot\text{(height)}\\[5pt] &= \pi r^2\cdot h\,,\\[10pt] \text{Area} &= \text{(area of the base)} + \text{(area of the cylindrical surface)}\\[5pt] &= \pi r^2 + 2\pi rh\,\textrm{.} \end{align}

The problem can then be formulated as: minimise the can's area, \displaystyle A = \pi r^2 + 2\pi h, whilst at the same time keeping the volume, \displaystyle V = \pi r^2h\,, constant.

From the formula for the volume, we can make h the subject,

\displaystyle h=\frac{V}{\pi r^2}

and express the area solely in terms of the radius, r,

\displaystyle A = \pi r^2 + 2\pi r\cdot\frac{V}{\pi r^2} = \pi r^2 + \frac{2V}{r}\,\textrm{.}

The minimisation problem is then:

Minimise the area \displaystyle A(r) = \pi r^2 + \frac{2V}{r}, when \displaystyle r>0\,.

The area function \displaystyle A(r) is differentiable for all \displaystyle r>0 and the region of definition \displaystyle r>0 has no endpoints (\displaystyle r=0 does not satisfy \displaystyle r>0), so the function can only assume extreme values at critical points.

The derivative is given by

\displaystyle A'(r) = 2\pi r - \frac{2V}{r^2}\,,

and if we set the derivative equal to zero, so as to obtain the critical points, we get

\displaystyle \begin{align}

& 2\pi r - \frac{2V}{r^2} = 0\quad \Leftrightarrow \quad 2\pi r = \frac{2V}{r^2}\\[5pt] &\quad\Leftrightarrow \quad r^3=\frac{V}{\pi}\quad \Leftrightarrow \quad r=\sqrt[\scriptstyle 3]{\frac{V}{\pi}}\,\textrm{.} \end{align}

For this value of r, the second derivative,

\displaystyle A''(r) = 2\pi + \frac{4V}{r^3}\,,

has the value

\displaystyle A''\bigl(\sqrt[3]{V/\pi}\bigr) = 2\pi + \frac{4V}{V/\pi } = 6\pi > 0\,,

which shows that \displaystyle r=\sqrt[3]{V/\pi} is a local minimum.

Because the region of definition, \displaystyle r>0, is open (the endpoint \displaystyle r=0\text{ } is not included) and unlimited, we cannot directly say that the area is least when \displaystyle r = \sqrt[3]{V/\pi}\,; it could be the case that area becomes smaller when \displaystyle r\to 0 or \displaystyle r\to \infty . In this case, however, the area increases without bound as \displaystyle r\to 0 or \displaystyle r\to \infty , so \displaystyle r=\sqrt[3]{V/\pi} really is a global minimum.

The metal can has the least area for a given volume \displaystyle V when

\displaystyle \begin{align}

r &= \sqrt[3]{V/\pi}\,,\quad\text{and}\\[5pt] h &= \frac{V}{\pi r^{2}} = \frac{V}{\pi}\Bigl(\frac{V}{\pi}\Bigr)^{-2/3} = \Bigl( \frac{V}{\pi}\Bigr)^{1-2/3} = \Bigl(\frac{V}{\pi}\Bigr)^{1/3} = \sqrt[3]{\frac{V}{\pi}}\,\textrm{.} \end{align}