3.2 Exercises

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
m (Regenerate images and tabs)
Current revision (10:21, 3 October 2008) (edit) (undo)
 
(9 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[3.2 Polär form|Teori]]}}
+
{{Not selected tab|[[3.2 Polar form|Theory]]}}
-
{{Vald flik|[[3.2 Övningar|Övningar]]}}
+
{{Selected tab|[[3.2 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 3.2:1===
+
===Exercise 3.2:1===
<div class="ovning">
<div class="ovning">
-
Givet de komplexa talen <math>\,z=2+i\,</math>, <math>\,w=2+3i\,</math> och <math>\,u=-1-2i\,</math>. Markera följande tal i det komplexa talplanet
+
Given the complex numbers <math>\,z=2+i\,</math>, <math>\,w=2+3i\,</math> and <math>\,u=-1-2i\,</math>. Mark the following numbers on the complex plane:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="50%"|<math>z\,</math> och <math>\,w</math>
+
|width="50%"|<math>z\,</math> and <math>\,w</math>
|b)
|b)
-
|width="50%"| <math>z+u\,</math> och <math>\,z-u</math>
+
|width="50%"| <math>z+u\,</math> and <math>\,z-u</math>
|-
|-
|c)
|c)
Line 21: Line 21:
|width="50%"| <math>z-\overline{w}+u</math>
|width="50%"| <math>z-\overline{w}+u</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.2:1|Lösning a|Lösning 3.2:1a|Lösning b|Lösning 3.2:1b|Lösning c|Lösning 3.2:1c|Lösning d|Lösning 3.2:1d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.2:1|Solution a|Solution 3.2:1a|Solution b|Solution 3.2:1b|Solution c|Solution 3.2:1c|Solution d|Solution 3.2:1d}}
-
===Övning 3.2:2===
+
===Exercise 3.2:2===
<div class="ovning">
<div class="ovning">
-
Rita in följande mängder i det komplexa talplanet
+
Draw the following sets in the complex number plane
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 42: Line 42:
|width="50%"| <math>2<|z-i|\le3</math>
|width="50%"| <math>2<|z-i|\le3</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.2:2|Lösning a|Lösning 3.2:2a|Lösning b|Lösning 3.2:2b|Lösning c|Lösning 3.2:2c|Lösning d|Lösning 3.2:2d|Lösning e|Lösning 3.2:2e|Lösning f|Lösning 3.2:2f}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.2:2|Solution a|Solution 3.2:2a|Solution b|Solution 3.2:2b|Solution c|Solution 3.2:2c|Solution d|Solution 3.2:2d|Solution e|Solution 3.2:2e|Solution f|Solution 3.2:2f}}
-
===Övning 3.2:3===
+
===Exercise 3.2:3===
<div class="ovning">
<div class="ovning">
-
De komplexa talen <math>\,1+i\,</math>, <math>\,3+2i\,</math> och <math>\,3i\,</math> bildar i det komplexa talplanet tre hörn i en kvadrat. Bestäm kvadratens fjärde hörn.
+
The complex numbers <math>\,1+i\,</math>, <math>\,3+2i\,</math> and <math>\,3i\,</math> constitute three corners of a square in the complex number plane. Determine the square's fourth corner.
-
</div>{{#NAVCONTENT:Svar|Svar 3.2:3|Lösning |Lösning 3.2:3}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.2:3|Solution|Solution 3.2:3}}
-
===Övning 3.2:4===
+
===Exercise 3.2:4===
<div class="ovning">
<div class="ovning">
-
Bestäm beloppet av
+
Determine the magnitude of
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 63: Line 63:
|width="50%"| <math>\displaystyle\frac{3-4i}{3+2i}</math>
|width="50%"| <math>\displaystyle\frac{3-4i}{3+2i}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.2:4|Lösning a|Lösning 3.2:4a|Lösning b|Lösning 3.2:4b|Lösning c|Lösning 3.2:4c|Lösning d|Lösning 3.2:4d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.2:4|Solution a|Solution 3.2:4a|Solution b|Solution 3.2:4b|Solution c|Solution 3.2:4c|Solution d|Solution 3.2:4d}}
-
===Övning 3.2:5===
+
===Exercise 3.2:5===
<div class="ovning">
<div class="ovning">
-
Bestäm argumentet av
+
Determine the argument of
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 79: Line 79:
|width="50%"| <math>\displaystyle\frac{i}{1+i}</math>
|width="50%"| <math>\displaystyle\frac{i}{1+i}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.2:5|Lösning a|Lösning 3.2:5a|Lösning b|Lösning 3.2:5b|Lösning c|Lösning 3.2:5c|Lösning d|Lösning 3.2:5d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.2:5|Solution a|Solution 3.2:5a|Solution b|Solution 3.2:5b|Solution c|Solution 3.2:5c|Solution d|Solution 3.2:5d}}
-
===Övning 3.2:6===
+
===Exercise 3.2:6===
<div class="ovning">
<div class="ovning">
-
Skriv följande tal i polär form
+
Write the following numbers in polar form
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Line 100: Line 100:
|width="50%"| <math>\displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}</math>
|width="50%"| <math>\displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.2:6|Lösning a|Lösning 3.2:6a|Lösning b|Lösning 3.2:6b|Lösning c|Lösning 3.2:6c|Lösning d|Lösning 3.2:6d|Lösning e|Lösning 3.2:6e|Lösning f|Lösning 3.2:6f}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.2:6|Solution a|Solution 3.2:6a|Solution b|Solution 3.2:6b|Solution c|Solution 3.2:6c|Solution d|Solution 3.2:6d|Solution e|Solution 3.2:6e|Solution f|Solution 3.2:6f}}

Current revision

       Theory          Exercises      

Exercise 3.2:1

Given the complex numbers \displaystyle \,z=2+i\,, \displaystyle \,w=2+3i\, and \displaystyle \,u=-1-2i\,. Mark the following numbers on the complex plane:

a) \displaystyle z\, and \displaystyle \,w b) \displaystyle z+u\, and \displaystyle \,z-u
c) \displaystyle 2z+w d) \displaystyle z-\overline{w}+u

Exercise 3.2:2

Draw the following sets in the complex number plane

a) \displaystyle 0\le \mbox{Im}\, z \le 3 b) \displaystyle 0 \le \mbox{Re} \, z \le \mbox{Im}\, z \le 3
c) \displaystyle |z|=2 d) \displaystyle |z-1-i|=3
e) \displaystyle \mbox{Re}\, z = i + \bar z f) \displaystyle 2<|z-i|\le3

Exercise 3.2:3

The complex numbers \displaystyle \,1+i\,, \displaystyle \,3+2i\, and \displaystyle \,3i\, constitute three corners of a square in the complex number plane. Determine the square's fourth corner.

Exercise 3.2:4

Determine the magnitude of

a) \displaystyle 3+4i b) \displaystyle (2-i) + (5+3i)
c) \displaystyle (3-4i)(3+2i) d) \displaystyle \displaystyle\frac{3-4i}{3+2i}

Exercise 3.2:5

Determine the argument of

a) \displaystyle -10 b) \displaystyle -2+2i
c) \displaystyle (\sqrt{3} +i)(1-i) d) \displaystyle \displaystyle\frac{i}{1+i}

Exercise 3.2:6

Write the following numbers in polar form

a) \displaystyle 3 b) \displaystyle -11i
c) \displaystyle -4-4i d) \displaystyle \sqrt{10} + \sqrt{30}\,i
e) \displaystyle \displaystyle\frac{1+i\sqrt{3}}{1+i} f) \displaystyle \displaystyle\frac{(2+2i)(1+i\sqrt{3}\,)}{3i(\sqrt{12} -2i)}