Solution 3.4:4

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_4_4.gif </center> {{NAVCONTENT_STOP}})
Current revision (13:45, 31 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Because <math>z=1-2i</math> should be a root of the equation, we can substitute
-
<center> [[Bild:3_4_4.gif]] </center>
+
<math>z=1-2i</math> in and the equation should be satisfied,
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>(1-2i)^3 + a(1-2i) + b = 0\,\textrm{.}</math>}}
 +
 
 +
We will therefore adjust the constants <math>a</math> and <math>b</math> so that the relation above holds. We simplify the left-hand side,
 +
 
 +
{{Displayed math||<math>-11+2i+a(1-2i)+b=0</math>}}
 +
 
 +
and collect together the real and imaginary parts,
 +
 
 +
{{Displayed math||<math>(-11+a+b)+(2-2a)i=0\,\textrm{.}</math>}}
 +
 
 +
If the left-hand side is to equal the right-hand side, the left-hand side's real and imaginary parts must be equal to zero, i.e.
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
-11+a+b &= 0\,,\\[5pt]
 +
2-2a &= 0\,\textrm{.}
 +
\end{align}\right.</math>}}
 +
 
 +
This gives <math>a=1</math> and <math>b=10</math>.
 +
 
 +
The equation is thus
 +
 
 +
{{Displayed math||<math>z^3+z+10=0</math>}}
 +
 
 +
and has the prescribed root <math>z=1-2i</math>.
 +
 
 +
What we have is a polynomial with real coefficients and we therefore know that the equation has, in addition, the complex conjugate root <math>z=1+2i</math>.
 +
 
 +
Hence, we know two of the equation's three roots and we can obtain the third root with help of the factor theorem. According to the factor theorem, the equation's left-hand side contains the factor
 +
 
 +
{{Displayed math||<math>\bigl(z-(1-2i)\bigr)\bigl(z-(1+2i)\bigr)=z^2-2z+5</math>}}
 +
 
 +
and this means that we can write
 +
 
 +
{{Displayed math||<math>z^3+z+10 = (z-A)(z^2-2z+5)</math>}}
 +
 
 +
where <math>z-A</math> is the factor which corresponds to the third root <math>z=A</math>. Using polynomial division, we obtain the factor
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
z-A
 +
&= \frac{z^3+z+10}{z^2-2z+5}\\[5pt]
 +
&= \frac{z^3-2z^2+5z+2z^2-5z+z+10}{z^2-2z+5}\\[5pt]
 +
&= \frac{z(z^2-2z+5)+2z^2-4z+10}{z^2-2z+5}\\[5pt]
 +
&= z + \frac{2z^2-4z+10}{z^2-2z+5}\\[5pt]
 +
&= z + \frac{2(z^2-2z+5)}{z^2-2z+5}\\[5pt]
 +
&= z+2\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Thus, the remaining root is <math>z=-2</math>.

Current revision

Because \displaystyle z=1-2i should be a root of the equation, we can substitute \displaystyle z=1-2i in and the equation should be satisfied,

\displaystyle (1-2i)^3 + a(1-2i) + b = 0\,\textrm{.}

We will therefore adjust the constants \displaystyle a and \displaystyle b so that the relation above holds. We simplify the left-hand side,

\displaystyle -11+2i+a(1-2i)+b=0

and collect together the real and imaginary parts,

\displaystyle (-11+a+b)+(2-2a)i=0\,\textrm{.}

If the left-hand side is to equal the right-hand side, the left-hand side's real and imaginary parts must be equal to zero, i.e.

\displaystyle \left\{\begin{align}

-11+a+b &= 0\,,\\[5pt] 2-2a &= 0\,\textrm{.} \end{align}\right.

This gives \displaystyle a=1 and \displaystyle b=10.

The equation is thus

\displaystyle z^3+z+10=0

and has the prescribed root \displaystyle z=1-2i.

What we have is a polynomial with real coefficients and we therefore know that the equation has, in addition, the complex conjugate root \displaystyle z=1+2i.

Hence, we know two of the equation's three roots and we can obtain the third root with help of the factor theorem. According to the factor theorem, the equation's left-hand side contains the factor

\displaystyle \bigl(z-(1-2i)\bigr)\bigl(z-(1+2i)\bigr)=z^2-2z+5

and this means that we can write

\displaystyle z^3+z+10 = (z-A)(z^2-2z+5)

where \displaystyle z-A is the factor which corresponds to the third root \displaystyle z=A. Using polynomial division, we obtain the factor

\displaystyle \begin{align}

z-A &= \frac{z^3+z+10}{z^2-2z+5}\\[5pt] &= \frac{z^3-2z^2+5z+2z^2-5z+z+10}{z^2-2z+5}\\[5pt] &= \frac{z(z^2-2z+5)+2z^2-4z+10}{z^2-2z+5}\\[5pt] &= z + \frac{2z^2-4z+10}{z^2-2z+5}\\[5pt] &= z + \frac{2(z^2-2z+5)}{z^2-2z+5}\\[5pt] &= z+2\,\textrm{.} \end{align}

Thus, the remaining root is \displaystyle z=-2.