1.1 Exercises
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: __NOTOC__ {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | style="border-bottom:1px solid #000" width="5px" | {{Mall:Ej vald flik|[[1.1 Inledning till derivat...) |
m |
||
(24 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[1.1 Introduction to derivatives|Theory]]}} |
- | {{ | + | {{Selected tab|[[1.1 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
+ | |||
+ | ===Exercise 1.1:1=== | ||
+ | <div class="ovning"> | ||
+ | {| width="100%" | ||
+ | | width="95%" | | ||
+ | The graph for <math>f(x)</math> is shown in the figure. | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | | valign="top" |a) | ||
+ | | width="100%" | What are the signs of <math>f^{\,\prime}(-4)</math> and <math>f^{\,\prime}(1)</math>? | ||
+ | |- | ||
+ | | valign="top" |b) | ||
+ | |width="100%"| For what values of <math>x</math> is <math>f^{\,\prime}(x)=0</math>? | ||
+ | |- | ||
+ | | valign="top" |c) | ||
+ | |width="100%"| In which interval(s) is <math>f^{\,\prime}(x)</math> negative? | ||
+ | |} | ||
+ | (Each square in the grid of the figure has width and height 1.) | ||
+ | | width="5%" | | ||
+ | ||{{:1.1 - Figure - The graph of f(x) in exercise 1.1:1}} | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 1.1:1|Solution a|Solution 1.1:1a|Solution b|Solution 1.1:1b|Solution c|Solution 1.1:1c}} | ||
+ | |||
+ | ===Exercise 1.1:2=== | ||
+ | <div class="ovning"> | ||
+ | Determine the derivative <math>f^{\,\prime}(x)</math> when | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="33%"| <math>f(x) = x^2 -3x +1</math> | ||
+ | |b) | ||
+ | |width="33%"| <math>f(x)=\cos x -\sin x</math> | ||
+ | |c) | ||
+ | |width="33%"| <math>f(x)= e^x-\ln x</math> | ||
+ | |- | ||
+ | |d) | ||
+ | |width="33%"| <math>f(x)=\sqrt{x}</math> | ||
+ | |e) | ||
+ | |width="33%"| <math>f(x) = (x^2-1)^2</math> | ||
+ | |f) | ||
+ | |width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 1.1:2|Solution a|Solution 1.1:2a|Solution b|Solution 1.1:2b|Solution c|Solution 1.1:2c|Solution d|Solution 1.1:2d|Solution e|Solution 1.1:2e|Solution f|Solution 1.1:2f}} | ||
+ | |||
+ | ===Exercise 1.1:3=== | ||
+ | <div class="ovning"> | ||
+ | A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | ||
+ | |||
+ | </div>{{#NAVCONTENT:Answer|Answer 1.1:3|Solution |Solution 1.1:3}} | ||
+ | |||
+ | ===Exercise 1.1:4=== | ||
+ | <div class="ovning"> | ||
+ | Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | ||
+ | |||
+ | </div>{{#NAVCONTENT:Answer|Answer 1.1:4|Solution |Solution 1.1:4}} | ||
+ | |||
+ | ===Exercise 1.1:5=== | ||
+ | <div exercise ="ovning"> | ||
+ | Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | ||
+ | |||
+ | </div>{{#NAVCONTENT:Answer|Answer 1.1:5|Solution |Solution 1.1:5}} |
Current revision
Theory | Exercises |
Exercise 1.1:1
The graph for \displaystyle f(x) is shown in the figure.
(Each square in the grid of the figure has width and height 1.) |
|
Answer
Solution a
Solution b
Solution c
Exercise 1.1:2
Determine the derivative \displaystyle f^{\,\prime}(x) when
a) | \displaystyle f(x) = x^2 -3x +1 | b) | \displaystyle f(x)=\cos x -\sin x | c) | \displaystyle f(x)= e^x-\ln x |
d) | \displaystyle f(x)=\sqrt{x} | e) | \displaystyle f(x) = (x^2-1)^2 | f) | \displaystyle f(x)= \cos (x+\pi/3) |
Answer
Solution a
Solution b
Solution c
Solution d
Solution e
Solution f
Exercise 1.1:3
A small ball, that is released from a height of \displaystyle h=10m above the ground at time \displaystyle t=0, is at a height \displaystyle h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2 at time \displaystyle t (measured in seconds) What is the speed of the ball when it hits the grounds?
Answer
Solution
Exercise 1.1:4
Determine the equation for the tangent and normal to the curve \displaystyle y=x^2 at the point \displaystyle (1,1).
Answer
Solution
Exercise 1.1:5
Determine all the points on the curve \displaystyle y=-x^2 which have a tangent that goes through the point \displaystyle (1,1).
Answer
Solution