3.4 Exercises
From Förberedande kurs i matematik 2
m (Robot: Automated text replacement (-{{Vald flik +{{Selected tab)) |
|||
(12 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[3.4 Complex polynomials|Theory]]}} |
- | {{ | + | {{Selected tab|[[3.4 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 3.4:1=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Carry out the following divisions (not all are exact, i.e. have no remainder) | |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
Line 23: | Line 23: | ||
|width="33%"| <math>\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}</math> | |width="33%"| <math>\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c|Solution d|Solution 3.4:1d|Solution e|Solution 3.4:1e}} |
- | === | + | ===Exercise 3.4:2=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | The equation <math>\,z^3-3z^2+4z-2=0\,</math> has the root <math>\,z=1\,</math>. Determine the other roots. | |
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution|Solution 3.4:2}} |
- | === | + | ===Exercise 3.4:3=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | The equation <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> has the roots <math>\,z=2i\,</math> and <math>\,z=-1-i\,</math>. Solve the equation. | |
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution|Solution 3.4:3}} |
- | === | + | ===Exercise 3.4:4=== |
<div class="ovning"> | <div class="ovning"> | ||
- | + | Determine two real numbers <math>\,a\,</math> and <math>\,b\,</math>, such that the equation <math>\ z^3+az+b=0\ </math> has the root <math>\,z=1-2i\,</math>. Then solve the equation. | |
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Answer 3.4:4|Solution|Solution 3.4:4}} |
+ | |||
+ | ===Exercise 3.4:5=== | ||
+ | <div class="ovning"> | ||
+ | Determine <math>\,a\,</math> and <math>\,b\,</math> so that the equation <math>\ z^4-6z^2+az+b=0\ </math> has a triple root. Then solve the equation. | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 3.4:5|Solution|Solution 3.4:5}} | ||
+ | |||
+ | ===Exercise 3.4:6=== | ||
+ | <div class="ovning"> | ||
+ | The equation <math>\ z^4+3z^3+z^2+18z-30=0\ </math> has a pure imaginary root. Determine all the roots. | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 3.4:6|Solution|Solution 3.4:6}} | ||
+ | |||
+ | ===Exercise 3.4:7=== | ||
+ | <div class="ovning"> | ||
+ | Determine the polynomial which has the following zeros | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="50%"|<math>1\,</math>, <math>\,2\,</math> and <math>\,4</math> | ||
+ | |b) | ||
+ | |width="50%"| <math>-1+ i\,</math> and <math>\,-1-i</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 3.4:7|Solution a|Solution 3.4:7a|Solution b|Solution 3.4:7b}} |
Current revision
Theory | Exercises |
Exercise 3.4:1
Carry out the following divisions (not all are exact, i.e. have no remainder)
a) | \displaystyle \displaystyle\frac{x^2-1}{x-1} | b) | \displaystyle \displaystyle\frac{x^2}{x+1} | c) | \displaystyle \displaystyle \frac{x^3+a^3}{x+a} |
d) | \displaystyle \displaystyle\frac{x^3 +x+2}{x+1} | e) | \displaystyle \displaystyle \frac{x^3+2x^2+1}{x^2+3x+1} |
Exercise 3.4:2
The equation \displaystyle \,z^3-3z^2+4z-2=0\, has the root \displaystyle \,z=1\,. Determine the other roots.
Exercise 3.4:3
The equation \displaystyle \,z^4+2z^3+6z^2 +8z +8 =0\, has the roots \displaystyle \,z=2i\, and \displaystyle \,z=-1-i\,. Solve the equation.
Exercise 3.4:4
Determine two real numbers \displaystyle \,a\, and \displaystyle \,b\,, such that the equation \displaystyle \ z^3+az+b=0\ has the root \displaystyle \,z=1-2i\,. Then solve the equation.
Exercise 3.4:5
Determine \displaystyle \,a\, and \displaystyle \,b\, so that the equation \displaystyle \ z^4-6z^2+az+b=0\ has a triple root. Then solve the equation.
Exercise 3.4:6
The equation \displaystyle \ z^4+3z^3+z^2+18z-30=0\ has a pure imaginary root. Determine all the roots.
Exercise 3.4:7
Determine the polynomial which has the following zeros
a) | \displaystyle 1\,, \displaystyle \,2\, and \displaystyle \,4 | b) | \displaystyle -1+ i\, and \displaystyle \,-1-i |