Solution 3.3:4c
From Förberedande kurs i matematik 2
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_4c.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(5 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | We complete the square on the left-hand side, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>\begin{align} |
+ | (z+1)^2-1^2+3 &= 0\,,\\[5pt] | ||
+ | (z+1)^2+2 &= 0\,\textrm{.} | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | Taking the root now gives <math>z+1=\pm i\sqrt{2}</math>, i.e. <math>z=-1+i\sqrt{2}</math> and <math>z=-1-i\sqrt{2}</math>. | ||
+ | |||
+ | We test the solutions in the equation to ascertain that we have calculated correctly. | ||
+ | |||
+ | <math>\begin{align} | ||
+ | z=-1+i\sqrt{2}:\quad z^2+2z+3 | ||
+ | &= \bigl(-1+i\sqrt{2}\,\bigr)^2 + 2\bigl(-1+i\sqrt{2}\bigr) + 3\\[5pt] | ||
+ | &= (-1)^2 - 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 + 2i\sqrt{2} + 3\\[5pt] | ||
+ | &= 1-2\cdot i\sqrt{2}-2-2+2i\sqrt{2}+3\\[5pt] | ||
+ | &= 0,\\[10pt] | ||
+ | z={}\rlap{-1-i\sqrt{2}:}\phantom{-1+i\sqrt{2}:}{}\quad z^2+2z+3 | ||
+ | &= \bigl(-1-i\sqrt{2}\,\bigr)^2 + 2\bigl(-1-i\sqrt{2}\,\bigr) + 3\\[5pt] | ||
+ | &= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt] | ||
+ | &= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt] | ||
+ | &= 0\,\textrm{.} | ||
+ | \end{align}</math> |
Current revision
We complete the square on the left-hand side,
\displaystyle \begin{align}
(z+1)^2-1^2+3 &= 0\,,\\[5pt] (z+1)^2+2 &= 0\,\textrm{.} \end{align} |
Taking the root now gives \displaystyle z+1=\pm i\sqrt{2}, i.e. \displaystyle z=-1+i\sqrt{2} and \displaystyle z=-1-i\sqrt{2}.
We test the solutions in the equation to ascertain that we have calculated correctly.
\displaystyle \begin{align} z=-1+i\sqrt{2}:\quad z^2+2z+3 &= \bigl(-1+i\sqrt{2}\,\bigr)^2 + 2\bigl(-1+i\sqrt{2}\bigr) + 3\\[5pt] &= (-1)^2 - 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 + 2i\sqrt{2} + 3\\[5pt] &= 1-2\cdot i\sqrt{2}-2-2+2i\sqrt{2}+3\\[5pt] &= 0,\\[10pt] z={}\rlap{-1-i\sqrt{2}:}\phantom{-1+i\sqrt{2}:}{}\quad z^2+2z+3 &= \bigl(-1-i\sqrt{2}\,\bigr)^2 + 2\bigl(-1-i\sqrt{2}\,\bigr) + 3\\[5pt] &= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt] &= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt] &= 0\,\textrm{.} \end{align}