Solution 3.3:3c
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_3c.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | If we take the minus sign out in front of the whole expression, |
- | < | + | |
- | {{ | + | {{Displayed math||<math>-\bigl(z^2+2iz-4z-1\bigr)\,,</math>}} |
+ | |||
+ | and collect together the first-degree terms, | ||
+ | |||
+ | {{Displayed math||<math>-\bigl(z^2+(-4+2i)z-1\bigr)\,,</math>}} | ||
+ | |||
+ | we can then complete the square of the expression inside the outer bracket, | ||
+ | |||
+ | {{Displayed math||<math>\begin{align} | ||
+ | -\bigl(z^2+(-4+2i)z-1\bigr) | ||
+ | &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] | ||
+ | &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] | ||
+ | &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] | ||
+ | &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] | ||
+ | &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] | ||
+ | &= -(z-2+i)^2+4-4i\,\textrm{.} | ||
+ | \end{align}</math>}} |
Current revision
If we take the minus sign out in front of the whole expression,
\displaystyle -\bigl(z^2+2iz-4z-1\bigr)\,, |
and collect together the first-degree terms,
\displaystyle -\bigl(z^2+(-4+2i)z-1\bigr)\,, |
we can then complete the square of the expression inside the outer bracket,
\displaystyle \begin{align}
-\bigl(z^2+(-4+2i)z-1\bigr) &= -\Bigl(\Bigl(z+\frac{-4+2i}{2}\Bigr)^2-\Bigl(\frac{-4+2i}{2}\Bigr)^2-1\Bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2+i)^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-(-2)^2+4i-i^2-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i+1-1\bigr)\\[5pt] &= -\bigl((z-2+i)^2-4+4i\bigr)\\[5pt] &= -(z-2+i)^2+4-4i\,\textrm{.} \end{align} |