Solution 3.3:2c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_2c-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:3_3_2c-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (12:34, 30 October 2008) (edit) (undo)
m
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
We write <math>z</math> and the right-hand side <math>-1-i</math> in polar form
-
<center> [[Bild:3_3_2c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
-
{{NAVCONTENT_START}}
+
z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt]
-
<center> [[Bild:3_3_2c-2(2).gif]] </center>
+
-1-i &= \sqrt{2}\Bigl(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\Bigr)\,\textrm{.}
-
{{NAVCONTENT_STOP}}
+
\end{align}</math>}}
 +
 
 +
Using de Moivre's formula, the equation can now be written as
 +
 
 +
{{Displayed math||<math>r^5(\cos 5\alpha + i\sin 5\alpha) = \sqrt{2}\Bigl(\cos \frac{5\pi}{4} + i\sin\frac{5\pi}{4}\Bigr)\,\textrm{.}</math>}}
 +
 
 +
If we identify the magnitude and argument on both sides, we get
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
r^5 &= \sqrt{2}\,,\\[5pt]
 +
5\alpha &= \frac{5\pi}{4} + 2n\pi\,,\quad\text{(n is an arbitrary integer).}
 +
\end{align}\right.</math>}}
 +
 
 +
(The arguments <math>5\alpha</math> and <math>5\pi/4</math> can differ by a multiple of <math>2\pi</math> and still correspond to the same complex number.)
 +
 
 +
This gives that
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
r &= \sqrt[5]{2} = \bigl(2^{1/2}\bigr)^{1/5} = 2^{1/10}\,,\\[5pt]
 +
\alpha &= \frac{1}{5}\Bigl(\frac{5\pi}{4}+2n\pi\Bigr) = \frac{\pi}{4} + \frac{2n\pi}{5}\,,\quad\text{(n is an arbitrary integer).}
 +
\end{align}\right.</math>}}
 +
 
 +
If we investigate the argument <math>\alpha</math> more closely, we see that it assumes essentially only five different values,
 +
 
 +
{{Displayed math||<math>\frac{\pi}{4}</math>, <math>\quad\frac{\pi}{4}+\frac{2\pi}{5}</math>, <math>\quad\frac{\pi}{4}+\frac{4\pi}{5}</math>, <math>\quad\frac{\pi}{4}+\frac{6\pi}{5}\quad</math> and <math>\quad\frac{\pi}{4}+\frac{8\pi}{5}</math>}}
 +
 
 +
since these angle values then repeat to within a multiple of <math>2\pi</math>.
 +
 
 +
In summary, the solutions are
 +
 
 +
{{Displayed math||<math>z = 2^{1/10}\,\Bigl(\cos\Bigl(\frac{\pi}{4}+\frac{2n\pi}{5}\Bigr) + i\sin\Bigl(\frac{\pi}{4}+\frac{2n\pi}{5}\Bigr)\Bigr)\,,</math>}}
 +
 
 +
for <math>n=0</math>, <math>1</math>, <math>2</math>, <math>3</math> and
 +
<math>4</math>.
 +
 
 +
[[Image:3_3_2_c.gif|center]]

Current revision

We write \displaystyle z and the right-hand side \displaystyle -1-i in polar form

\displaystyle \begin{align}

z &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] -1-i &= \sqrt{2}\Bigl(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\Bigr)\,\textrm{.} \end{align}

Using de Moivre's formula, the equation can now be written as

\displaystyle r^5(\cos 5\alpha + i\sin 5\alpha) = \sqrt{2}\Bigl(\cos \frac{5\pi}{4} + i\sin\frac{5\pi}{4}\Bigr)\,\textrm{.}

If we identify the magnitude and argument on both sides, we get

\displaystyle \left\{\begin{align}

r^5 &= \sqrt{2}\,,\\[5pt] 5\alpha &= \frac{5\pi}{4} + 2n\pi\,,\quad\text{(n is an arbitrary integer).} \end{align}\right.

(The arguments \displaystyle 5\alpha and \displaystyle 5\pi/4 can differ by a multiple of \displaystyle 2\pi and still correspond to the same complex number.)

This gives that

\displaystyle \left\{\begin{align}

r &= \sqrt[5]{2} = \bigl(2^{1/2}\bigr)^{1/5} = 2^{1/10}\,,\\[5pt] \alpha &= \frac{1}{5}\Bigl(\frac{5\pi}{4}+2n\pi\Bigr) = \frac{\pi}{4} + \frac{2n\pi}{5}\,,\quad\text{(n is an arbitrary integer).} \end{align}\right.

If we investigate the argument \displaystyle \alpha more closely, we see that it assumes essentially only five different values,

\displaystyle \frac{\pi}{4}, \displaystyle \quad\frac{\pi}{4}+\frac{2\pi}{5}, \displaystyle \quad\frac{\pi}{4}+\frac{4\pi}{5}, \displaystyle \quad\frac{\pi}{4}+\frac{6\pi}{5}\quad and \displaystyle \quad\frac{\pi}{4}+\frac{8\pi}{5}

since these angle values then repeat to within a multiple of \displaystyle 2\pi.

In summary, the solutions are

\displaystyle z = 2^{1/10}\,\Bigl(\cos\Bigl(\frac{\pi}{4}+\frac{2n\pi}{5}\Bigr) + i\sin\Bigl(\frac{\pi}{4}+\frac{2n\pi}{5}\Bigr)\Bigr)\,,

for \displaystyle n=0, \displaystyle 1, \displaystyle 2, \displaystyle 3 and \displaystyle 4.