Solution 3.3:2d

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_2d-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:3_3_2d-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (12:58, 30 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we use <math>w=z-1</math> as a new unknown and move the term <math>4</math> over to the right-hand side, we have a binomial equation,
-
<center> [[Bild:3_3_2d-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>w^4=-4\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:3_3_2d-2(2).gif]] </center>
+
We can solve this equation in the usual way by using polar form and de Moivre's formula. We have
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\begin{align}
 +
w &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt]
 +
-4 &= 4(\cos\pi + i\sin\pi)\,,
 +
\end{align}</math>}}
 +
 
 +
and the equation becomes
 +
 
 +
{{Displayed math||<math>r^4(\cos 4\alpha + i\sin 4\alpha) = 4(\cos\pi + i\sin\pi)\,\textrm{.}</math>}}
 +
 
 +
The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of <math>2\pi</math>,
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
r^4 &= 4\,,\\[5pt]
 +
4\alpha &= \pi + 2n\pi\,,\quad\text{(n is an arbitrary integer),}
 +
\end{align} \right.</math>}}
 +
 
 +
which gives us that
 +
 
 +
{{Displayed math||<math>\left\{\begin{align}
 +
r &= \sqrt[4]{4} = \sqrt{2}\,,\\[5pt]
 +
\alpha &= \frac{\pi}{4}+\frac{n\pi}{2}\,,\quad\text{(n is an arbitrary integer).}
 +
\end{align}\right.</math>}}
 +
 
 +
For <math>n=0<math>, <math>1</math>, <math>2</math> and <math>3</math>, the argument <math>\alpha</math> assumes the four different values
 +
 
 +
{{Displayed math||<math>\frac{\pi}{4}</math>, <math>\quad\frac{3\pi}{4}</math>, <math>\quad\frac{5\pi}{4}\quad</math>and<math>\quad\frac{7\pi}{4}\,,</math>}}
 +
 
 +
and for other values of <math>n</math> we obtain values of <math>\alpha</math> which are equal to those above, apart from multiples of <math>2\pi</math>. Thus, we have four solutions,
 +
 
 +
{{Displayed math||<math>w=\left\{\begin{align}
 +
&\sqrt{2}\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt]
 +
&\sqrt{2}\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr)\\[5pt]
 +
&\sqrt{2}\Bigl(\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4}\Bigr)\\[5pt]
 +
&\sqrt{2}\Bigl(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\Bigr)
 +
\end{align}\right.
 +
=
 +
\left\{\begin{align}
 +
1+i\,,&\\[5pt]
 +
-1+i\,,&\\[5pt]
 +
-1-i\,,&\\[5pt]
 +
1-i\,\textrm{,}
 +
\end{align}\right.</math>}}
 +
 
 +
and the original variable z is
 +
 
 +
{{Displayed math||<math>z=\left\{\begin{align}
 +
&2+i\,,\\[5pt]
 +
&i\,,\\[5pt]
 +
&-i\,,\\[5pt]
 +
&2-i\,\textrm{.}
 +
\end{align}\right.</math>}}

Current revision

If we use \displaystyle w=z-1 as a new unknown and move the term \displaystyle 4 over to the right-hand side, we have a binomial equation,

\displaystyle w^4=-4\,\textrm{.}

We can solve this equation in the usual way by using polar form and de Moivre's formula. We have

\displaystyle \begin{align}

w &= r(\cos\alpha + i\sin\alpha)\,,\\[5pt] -4 &= 4(\cos\pi + i\sin\pi)\,, \end{align}

and the equation becomes

\displaystyle r^4(\cos 4\alpha + i\sin 4\alpha) = 4(\cos\pi + i\sin\pi)\,\textrm{.}

The only way that both sides can be equal is if the magnitudes agree and the arguments do not differ by anything other than a multiple of \displaystyle 2\pi,

\displaystyle \left\{\begin{align}

r^4 &= 4\,,\\[5pt] 4\alpha &= \pi + 2n\pi\,,\quad\text{(n is an arbitrary integer),} \end{align} \right.

which gives us that

\displaystyle \left\{\begin{align}

r &= \sqrt[4]{4} = \sqrt{2}\,,\\[5pt] \alpha &= \frac{\pi}{4}+\frac{n\pi}{2}\,,\quad\text{(n is an arbitrary integer).} \end{align}\right.

For \displaystyle n=0, 1, \displaystyle 2 and \displaystyle 3, the argument \displaystyle \alpha assumes the four different values

\displaystyle \frac{\pi}{4}, \displaystyle \quad\frac{3\pi}{4}, \displaystyle \quad\frac{5\pi}{4}\quadand\displaystyle \quad\frac{7\pi}{4}\,,

and for other values of \displaystyle n we obtain values of \displaystyle \alpha which are equal to those above, apart from multiples of \displaystyle 2\pi. Thus, we have four solutions,

\displaystyle w=\left\{\begin{align}

&\sqrt{2}\Bigl(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{3\pi}{4}+i\sin\frac{3\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4}\Bigr)\\[5pt] &\sqrt{2}\Bigl(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\Bigr) \end{align}\right. = \left\{\begin{align} 1+i\,,&\\[5pt] -1+i\,,&\\[5pt] -1-i\,,&\\[5pt] 1-i\,\textrm{,} \end{align}\right.

and the original variable z is

\displaystyle z=\left\{\begin{align}

&2+i\,,\\[5pt] &i\,,\\[5pt] &-i\,,\\[5pt] &2-i\,\textrm{.} \end{align}\right.