Solution 3.1:1f

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:3_1_1f.gif </center> {{NAVCONTENT_STOP}})
Current revision (15:07, 29 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Let's begin by calculating some powers of ''i'',
-
<center> [[Bild:3_1_1f.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
i^2 &= i\cdot i = -1\,,\\[5pt]
 +
i^3 &= i^2\cdot i = (-1)\cdot i = -i\,,\\[5pt]
 +
i^4 &= i^2\cdot i^2 = (-1)\cdot (-1) = 1\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Now, we observe that because <math>i^4=1</math>, we can try to factorize <math>i^{11}</math> and <math>i^{20}</math> in terms of <math>i^4</math>,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
i^{11} &= i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i) = -i\,,\\[5pt]
 +
i^{20} &= i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1 = 1\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
The answer becomes
 +
 
 +
{{Displayed math||<math>i^{20}+i^{11}=1-i\,\textrm{.}</math>}}

Current revision

Let's begin by calculating some powers of i,

\displaystyle \begin{align}

i^2 &= i\cdot i = -1\,,\\[5pt] i^3 &= i^2\cdot i = (-1)\cdot i = -i\,,\\[5pt] i^4 &= i^2\cdot i^2 = (-1)\cdot (-1) = 1\,\textrm{.} \end{align}

Now, we observe that because \displaystyle i^4=1, we can try to factorize \displaystyle i^{11} and \displaystyle i^{20} in terms of \displaystyle i^4,

\displaystyle \begin{align}

i^{11} &= i^{4+4+3} = i^4\cdot i^4\cdot i^3 = 1\cdot 1 \cdot (-i) = -i\,,\\[5pt] i^{20} &= i^{4+4+4+4+4} = i^4\cdot i^4\cdot i^4\cdot i^4\cdot i^4 = 1\cdot 1 \cdot 1\cdot 1 \cdot 1 = 1\,\textrm{.} \end{align}

The answer becomes

\displaystyle i^{20}+i^{11}=1-i\,\textrm{.}