Solution 2.3:2a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_3_2a-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:2_3_2a-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (08:37, 29 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
Had the integral instead been
-
<center> [[Bild:2_3_2a-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int e^{\sqrt{x}}\cdot\frac{1}{2\sqrt{x}}\,dx</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:2_3_2a-2(2).gif]] </center>
+
it is quite obvious that we would substitute <math>u=\sqrt{x}</math>, but we are missing a factor <math>1/2\sqrt{x}</math> which would take account of the derivative of <math>u</math> which is needed when <math>dx</math> is replaced by
-
{{NAVCONTENT_STOP}}
+
<math>du</math>. In spite of this, we can try the substitution <math>u=\sqrt{x}</math> if we multiply top and bottom by what is missing,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int e^{\sqrt{x}}\,dx
 +
&= \int e^{\sqrt{x}}\cdot 2\sqrt{x}\cdot \frac{1}{2\sqrt{x}}\,dx\\[5pt]
 +
&= \left\{\begin{align}
 +
u &= \sqrt{x}\\[5pt]
 +
du &= \bigl(\sqrt{x}\,\bigr)'\,dx = \dfrac{1}{2\sqrt{x}}\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= \int e^{u}\cdot 2u\,du\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Now, we obtain instead another, not entirely simple, integral, but we can calculate the new integral by partial integration (<math>2u</math> is the factor that we differentiate and <math>e^{u}</math> is the factor that we integrate),
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\int e^u\cdot 2u\,du
 +
&= e^u\cdot 2u - \int e^u\cdot 2\,du\\[5pt]
 +
&= 2ue^u - 2\int e^u\,du\\[5pt]
 +
&= 2ue^u - 2e^u + C\\[5pt]
 +
&= 2(u-1)e^u + C\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
If we substitute back <math>u=\sqrt{x}</math>, we obtain the answer
 +
 
 +
{{Displayed math||<math>\int e^{\sqrt{x}}\,dx = 2(\sqrt{x}-1)e^{\sqrt{x}} + C\,\textrm{.}</math>}}
 +
 
 +
As can be seen, it is possible to mix different integration techniques and often we need to experiment with different approaches before we find the right one.

Current revision

Had the integral instead been

\displaystyle \int e^{\sqrt{x}}\cdot\frac{1}{2\sqrt{x}}\,dx

it is quite obvious that we would substitute \displaystyle u=\sqrt{x}, but we are missing a factor \displaystyle 1/2\sqrt{x} which would take account of the derivative of \displaystyle u which is needed when \displaystyle dx is replaced by \displaystyle du. In spite of this, we can try the substitution \displaystyle u=\sqrt{x} if we multiply top and bottom by what is missing,

\displaystyle \begin{align}

\int e^{\sqrt{x}}\,dx &= \int e^{\sqrt{x}}\cdot 2\sqrt{x}\cdot \frac{1}{2\sqrt{x}}\,dx\\[5pt] &= \left\{\begin{align} u &= \sqrt{x}\\[5pt] du &= \bigl(\sqrt{x}\,\bigr)'\,dx = \dfrac{1}{2\sqrt{x}}\,dx \end{align}\right\}\\[5pt] &= \int e^{u}\cdot 2u\,du\,\textrm{.} \end{align}

Now, we obtain instead another, not entirely simple, integral, but we can calculate the new integral by partial integration (\displaystyle 2u is the factor that we differentiate and \displaystyle e^{u} is the factor that we integrate),

\displaystyle \begin{align}

\int e^u\cdot 2u\,du &= e^u\cdot 2u - \int e^u\cdot 2\,du\\[5pt] &= 2ue^u - 2\int e^u\,du\\[5pt] &= 2ue^u - 2e^u + C\\[5pt] &= 2(u-1)e^u + C\,\textrm{.} \end{align}

If we substitute back \displaystyle u=\sqrt{x}, we obtain the answer

\displaystyle \int e^{\sqrt{x}}\,dx = 2(\sqrt{x}-1)e^{\sqrt{x}} + C\,\textrm{.}

As can be seen, it is possible to mix different integration techniques and often we need to experiment with different approaches before we find the right one.