Solution 2.2:4c

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_4c-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:2_2_4c-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (15:27, 28 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,
-
<center> [[Bild:2_2_4c-1(2).gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2-2^2+8} = \int \frac{dx}{(x+2)^2+4}\,\textrm{.}</math>}}
-
{{NAVCONTENT_START}}
+
 
-
<center> [[Bild:2_2_4c-2(2).gif]] </center>
+
We take out a factor 4 from the denominator
-
{{NAVCONTENT_STOP}}
+
 
 +
{{Displayed math||<math>\int \frac{dx}{(x+2)^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}(x+2)^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1}</math>}}
 +
 
 +
and rewrite the quadratic term as
 +
 
 +
{{Displayed math||<math>\frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} = \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}\,\textrm{.}</math>}}
 +
 
 +
If we now substitute <math>u = (x+2)/2</math>, we obtain the integral in the exercise
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}
 +
&= \left\{\begin{align}
 +
u &= (x+2)/2\\[5pt]
 +
du &= dx/2
 +
\end{align}\right\}\\[5pt]
 +
&= \frac{1}{4}\int \frac{2\,du}{u^2+1}\\[5pt]
 +
&= \frac{1}{2}\int \frac{du}{u^2+1}\\[5pt]
 +
&= \frac{1}{2}\arctan u + C\\[5pt]
 +
&= \frac{1}{2}\arctan \frac{x+2}{2} + C\,\textrm{.}
 +
\end{align}</math>}}

Current revision

The trick is to complete the square in the denominator so that we obtain the same expression as in exercise b,

\displaystyle \int \frac{dx}{x^2+4x+8} = \int \frac{dx}{(x+2)^2-2^2+8} = \int \frac{dx}{(x+2)^2+4}\,\textrm{.}

We take out a factor 4 from the denominator

\displaystyle \int \frac{dx}{(x+2)^2+4} = \int \frac{dx}{4\bigl(\tfrac{1}{4}(x+2)^2+1\bigr)} = \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1}

and rewrite the quadratic term as

\displaystyle \frac{1}{4}\int \frac{dx}{\tfrac{1}{4}(x+2)^2+1} = \frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1}\,\textrm{.}

If we now substitute \displaystyle u = (x+2)/2, we obtain the integral in the exercise

\displaystyle \begin{align}

\frac{1}{4}\int \frac{dx}{\Bigl(\dfrac{x+2}{2}\Bigr)^2+1} &= \left\{\begin{align} u &= (x+2)/2\\[5pt] du &= dx/2 \end{align}\right\}\\[5pt] &= \frac{1}{4}\int \frac{2\,du}{u^2+1}\\[5pt] &= \frac{1}{2}\int \frac{du}{u^2+1}\\[5pt] &= \frac{1}{2}\arctan u + C\\[5pt] &= \frac{1}{2}\arctan \frac{x+2}{2} + C\,\textrm{.} \end{align}