Solution 2.1:5a

From Förberedande kurs i matematik 2

(Difference between revisions)
Jump to: navigation, search
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_5a-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:2_1_5a-2(2).gif </center> {{NAVCONTENT_STOP}})
Current revision (09:36, 28 October 2008) (edit) (undo)
m
 
(3 intermediate revisions not shown.)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
If we multiply top and bottom of the fraction by the conjugate expression
-
<center> [[Bild:2_1_5a-1(2).gif]] </center>
+
<math>\sqrt{x+9}+\sqrt{x}</math> then the formula for the difference of two squares gives that denominator's root is squared away,
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
{{Displayed math||<math>\begin{align}
-
<center> [[Bild:2_1_5a-2(2).gif]] </center>
+
\frac{1}{\sqrt{x+9}-\sqrt{x}}
-
{{NAVCONTENT_STOP}}
+
&= \frac{1}{\sqrt{x+9}-\sqrt{x}}\cdot\frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}}\\[5pt]
 +
&= \frac{\sqrt{x+9}+\sqrt{x}}{\bigl(\sqrt{x+9}\,\bigr)^2 - \bigl(\sqrt{x}\,\bigr)^2}\\[5pt]
 +
&= \frac{\sqrt{x+9}+\sqrt{x}}{x+9-x}\\[5pt]
 +
&= \frac{\sqrt{x+9}+\sqrt{x}}{9}\,\textrm{.}
 +
\end{align}</math>}}
 +
 
 +
Thus,
 +
 
 +
{{Displayed math||<math>\int \frac{dx}{\sqrt{x+9}-\sqrt{x}} = \frac{1}{9}\int\bigl(\sqrt{x+9}+\sqrt{x}\,\bigr)\,dx\,\textrm{.}</math>}}
 +
 
 +
If we write the square roots in power form,
 +
 
 +
{{Displayed math||<math>\frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx\,,</math>}}
 +
 
 +
we see that we have a standard integral and can write down the primitive functions directly,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx
 +
&= \frac{1}{9}\biggl(\frac{(x+9)^{1/2+1}}{\tfrac{1}{2}+1} + \frac{x^{1/2+1}}{\tfrac{1}{2}+1} \biggr)+C\\[5pt]
 +
&= \frac{1}{9}\Bigl(\frac{(x+9)^{3/2}}{3/2} + \frac{x^{3/2}}{3/2} \Bigr)+C\\[5pt]
 +
&= \frac{1}{9}\Bigl(\frac{2}{3}(x+9)^{3/2} + \frac{2}{3}x^{3/2} \Bigr)+C\\[5pt]
 +
&= \frac{2}{27}(x+9)^{3/2} + \frac{2}{27}x^{3/2}+C\,,
 +
\end{align}</math>}}
 +
 
 +
where C is an arbitrary constant.
 +
 
 +
This can also be written with square roots as
 +
 
 +
{{Displayed math||<math>\frac{2}{27}(x+9)\sqrt{x+9} + \frac{2}{27}x\sqrt{x} + C\,\textrm{.}</math>}}
 +
 
 +
 
 +
Note: To be completely certain that we have done everything correctly, we differentiate the answer and see if we get back the integrand,
 +
 
 +
{{Displayed math||<math>\begin{align}
 +
\frac{d}{dx}\Bigl( \frac{2}{27}(x+9)^{3/2} + \frac{2}{27}x^{3/2} + C \Bigr)
 +
&= \frac{2}{27}\cdot \frac{3}{2}(x+9)^{3/2-1} + \frac{2}{27}\cdot\frac{3}{2} x^{3/2-1} + 0\\[5pt]
 +
&= \frac{1}{9}(x+9)^{1/2} + \frac{1}{9}x^{1/2}\,\textrm{.}
 +
\end{align}</math>}}

Current revision

If we multiply top and bottom of the fraction by the conjugate expression \displaystyle \sqrt{x+9}+\sqrt{x} then the formula for the difference of two squares gives that denominator's root is squared away,

\displaystyle \begin{align}

\frac{1}{\sqrt{x+9}-\sqrt{x}} &= \frac{1}{\sqrt{x+9}-\sqrt{x}}\cdot\frac{\sqrt{x+9}+\sqrt{x}}{\sqrt{x+9}+\sqrt{x}}\\[5pt] &= \frac{\sqrt{x+9}+\sqrt{x}}{\bigl(\sqrt{x+9}\,\bigr)^2 - \bigl(\sqrt{x}\,\bigr)^2}\\[5pt] &= \frac{\sqrt{x+9}+\sqrt{x}}{x+9-x}\\[5pt] &= \frac{\sqrt{x+9}+\sqrt{x}}{9}\,\textrm{.} \end{align}

Thus,

\displaystyle \int \frac{dx}{\sqrt{x+9}-\sqrt{x}} = \frac{1}{9}\int\bigl(\sqrt{x+9}+\sqrt{x}\,\bigr)\,dx\,\textrm{.}

If we write the square roots in power form,

\displaystyle \frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx\,,

we see that we have a standard integral and can write down the primitive functions directly,

\displaystyle \begin{align}

\frac{1}{9}\int\bigl((x+9)^{1/2} + x^{1/2}\bigr)\,dx &= \frac{1}{9}\biggl(\frac{(x+9)^{1/2+1}}{\tfrac{1}{2}+1} + \frac{x^{1/2+1}}{\tfrac{1}{2}+1} \biggr)+C\\[5pt] &= \frac{1}{9}\Bigl(\frac{(x+9)^{3/2}}{3/2} + \frac{x^{3/2}}{3/2} \Bigr)+C\\[5pt] &= \frac{1}{9}\Bigl(\frac{2}{3}(x+9)^{3/2} + \frac{2}{3}x^{3/2} \Bigr)+C\\[5pt] &= \frac{2}{27}(x+9)^{3/2} + \frac{2}{27}x^{3/2}+C\,, \end{align}

where C is an arbitrary constant.

This can also be written with square roots as

\displaystyle \frac{2}{27}(x+9)\sqrt{x+9} + \frac{2}{27}x\sqrt{x} + C\,\textrm{.}


Note: To be completely certain that we have done everything correctly, we differentiate the answer and see if we get back the integrand,

\displaystyle \begin{align}

\frac{d}{dx}\Bigl( \frac{2}{27}(x+9)^{3/2} + \frac{2}{27}x^{3/2} + C \Bigr) &= \frac{2}{27}\cdot \frac{3}{2}(x+9)^{3/2-1} + \frac{2}{27}\cdot\frac{3}{2} x^{3/2-1} + 0\\[5pt] &= \frac{1}{9}(x+9)^{1/2} + \frac{1}{9}x^{1/2}\,\textrm{.} \end{align}