Solution 2.1:3d
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3d.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | By dividing the two terms in the numerator by <math>x</math>, we can simplify each term to a form which makes it possible simply to write down the primitive functions of the integrand, |
- | + | ||
- | {{ | + | {{Displayed math||<math>\begin{align} |
+ | \int \frac{x^{2}+1}{x}\,dx | ||
+ | &= \int \Bigl(\frac{x^2}{x} + \frac{1}{x}\Bigr)\,dx\\[5pt] | ||
+ | &= \int \bigl(x+x^{-1}\bigr)\,dx\\[5pt] | ||
+ | &= \frac{x^2}{2} + \ln |x| + C\,, | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | where <math>C</math> is an arbitrary constant. | ||
+ | |||
+ | |||
+ | Note: Observe that <math>1/x</math> has a singularity at <math>x=0</math>, so the answers above are only primitive functions over intervals that do not contain <math>x=0\,</math>. |
Current revision
By dividing the two terms in the numerator by \displaystyle x, we can simplify each term to a form which makes it possible simply to write down the primitive functions of the integrand,
\displaystyle \begin{align}
\int \frac{x^{2}+1}{x}\,dx &= \int \Bigl(\frac{x^2}{x} + \frac{1}{x}\Bigr)\,dx\\[5pt] &= \int \bigl(x+x^{-1}\bigr)\,dx\\[5pt] &= \frac{x^2}{2} + \ln |x| + C\,, \end{align} |
where \displaystyle C is an arbitrary constant.
Note: Observe that \displaystyle 1/x has a singularity at \displaystyle x=0, so the answers above are only primitive functions over intervals that do not contain \displaystyle x=0\,.