Solution 2.1:3c
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3c.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
(3 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | If we multiply the factors in the integrand together and use the power laws, |
- | + | ||
- | {{ | + | {{Displayed math||<math>\begin{align} |
+ | \int e^{2x}\bigl(e^x+1\bigr)\,dx | ||
+ | &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] | ||
+ | &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] | ||
+ | &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, | ||
+ | \end{align}</math>}} | ||
+ | |||
+ | we obtain a standard integral with two terms of the type <math>e^{ax}</math>, where | ||
+ | <math>a</math> is a constant. The indefinite integral is therefore | ||
+ | |||
+ | {{Displayed math||<math>\int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,,</math>}} | ||
+ | |||
+ | where <math>C</math> is an arbitrary constant. |
Current revision
If we multiply the factors in the integrand together and use the power laws,
\displaystyle \begin{align}
\int e^{2x}\bigl(e^x+1\bigr)\,dx &= \int\bigl(e^{2x}e^{x} + e^{2x}\bigr)\,dx\\[5pt] &= \int\bigl(e^{2x+x} + e^{2x}\bigr)\,dx\\[5pt] &= \int{\bigl(e^{3x} + e^{2x}\bigr)}\,dx\,, \end{align} |
we obtain a standard integral with two terms of the type \displaystyle e^{ax}, where \displaystyle a is a constant. The indefinite integral is therefore
\displaystyle \int \bigl(e^{3x}+e^{2x}\bigr)\,dx = \frac{e^{3x}}{3} + \frac{e^{2x}}{2} + C\,, |
where \displaystyle C is an arbitrary constant.